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FOREWORD 

 
ISO/IEC 17025: 1999: General requirements for the competence of testing and 
calibration laboratories, which replaces ISO/IEC Guide 25, requires all calibration and 
testing laboratories performing their own calibration to have a procedure to estimate the 
uncertainty of measurement for all calibrations and types of calibrations. SAC-SINGLAS 
has adopted this new standard as the criteria for accrediting competent testing and 
calibration laboratories.   
 
In October 1998, a Working Group was convened to review and update the first edition 
of SINGLAS Technical Guide 1 “Guidelines on the evaluation and expression of the 
measurement uncertainty” published in July 1995, which was based on “Guide to the 
Expression of Uncertainty in Measurement, 1993(E)” or in short the GUM.   
 
The second edition of the Technical Guide 1 was revised to align industry practice with 
the revised GUM (1995) and it contains more worked examples. These examples 
automatically supersede those in the first edition. 
 
ISO/IEC Guide 25:1990: General Requirements for the Competence of Calibration and 
Testing Laboratories, required that "a statement of the estimated uncertainty of the 
calibration or test results" be reported in the calibration and test reports.  In order to 
assist accredited calibration laboratories meet this requirement, in 1993, the SINGLAS 
Technical Committee on Calibration and Measurement decided that it was necessary to 
produce a simplified document for deriving measurement uncertainty. 
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1.0 INTRODUCTION 

 

1.1 Increasingly, many have recognized that correct evaluation of measurement uncertainty is 

integral to managing quality and costs in measurements. Uncertainty analysis leads to better 

understanding of the relative importance of various influence quantities on measurements.  

 

1.2 This publication gives recommendations for the treatment of uncertainty contributions 

and is intended to be applicable to most, if not all, of SAC-SINGLAS accredited 

measurement results. This publication does not define or recommend what the uncertainty 

contributions are, or should be, since these are dependent on the nature of the calibration 

and the measurement process. Worked examples on the treatment of uncertainty are 

included for the temperature, electrical, mechanical, dimensional and optical areas. 

 

2.0 CLASSIFICATION OF COMPONENTS OF UNCERTAINTY 

 

2.1 The objective of a measurement is to determine the value of the measurand that is, the value 

of the particular quantity to be measured. 

 

2.2 In general, the result of a measurement is only an approximation or estimate of the value of 

the measurand and thus is complete only when accompanied by a statement of the 

uncertainty of that estimate. 

 

2.3 Traditionally, an error in the measurement result is viewed as having two components, 

namely, a random component and a systematic component. Random error presumably arises 

from unpredictable or stochastic temporal and spatial variations of influence quantities.  

Systematic error arises from a recognized effect of an influence quantity on a measurement 

result. 

 

2.4 The uncertainty of the result of a measurement generally consists of several components 

which may be grouped into two types according to the method used to estimate their 

numerical values: 

  Type A - those evaluated by the statistical methods,  

  Type B - those evaluated by other means. 

 

2.5    There is not always a simple correspondence between the classification of uncertainty 

components into categories A and B and the commonly used classification of uncertainty 

components as "random" and "systematic".  The nature of an uncertainty component is 

conditioned by the use of the corresponding quantity, that is, how that quantity appears in 

the mathematical model that describes the measurement process.  When the corresponding 

quantity is used in a different way, a "random" component may become a "systematic" 

component and vice versa.  Thus the terms "random uncertainty" and "systematic 

uncertainty" can be misleading when generally applied.  An alternative nomenclature that 

might be used is 
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  "component of uncertainty arising from a random effect," 

  "component of uncertainty arising from a systematic effect," 

 

 where a random effect is one that gives rise to a possible random error in the current 

measurement process and a systematic effect is one that give rise to a possible systematic 

error in the current measurement process.  In principle, an uncertainty component arising 

from a systematic effect may in some cases be evaluated by method A while in the other 

cases by method B, as may be an uncertainty component arising from a random effect. 

 

3.0 MODELLING THE MEASUREMENT 

 

3.1 The output measurand Y is usually determined from N input quantities, ie. X1, X2, ..., XN, 

through a function  f :  

 

 

3.2 The input quantities X1, X2, ..., XN may themselves be viewed as measurands and may 

themselves depend on other quantities, including corrections and correction factors for 

systematic effects, thereby leading to a complicated functional relationship f . 

 

3.3 The function  f contains every quantity that contribute a significant component of uncertainty 

to the measurement result - this includes all corrections and correction factors. If the function  

f  does not model the measurement to the extent set by the required accuracy of the 

measurement result, additional input quantities must be included in  f  to eliminate the 

inadequacy. 

 

3.4 An estimate of the measurand Y, denoted by y, is obtained from equation (1) using input 

estimates x1, x2, ..., xN, for the values of the N input quantities X1, X2, ..., XN.  The output 

estimate y, which is the result of the measurement, is thus given by: 

 

3.5 The estimated standard deviation associated with the output estimate y is obtained by  

  

 appropriately combining the estimated standard deviation (termed as standard uncertainty 

and denoted by u(xi)) of each input estimate xi. 

 

3.6 Each standard uncertainty u(xi) is obtained either from a Type A or Type B evaluation as 

described below. Type A evaluations of standard uncertainty components are founded on 

frequency distributions while Type B evaluations are founded on a priori distributions - in 

both cases these distributions are models that represent the current state of knowledge. 

 

 

  

)1...(),,( 21 NXXXfY 

)2...(),,( 21 Nxxxfy 
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4.0 TYPE A EVALUATION OF STANDARD UNCERTAINTY 

 

4.1 Type A evaluation of standard uncertainty is based on any valid statistical method in 

analysis of a series of observations. 

 

4.2 A component of Type A evaluation of standard uncertainty arises from random effect. The 

Gaussian or Normal law of error forms the basis of the analytical study of random effects. 

 

4.3 In most cases, the best available estimate of the expected value of a quantity q that varies 

randomly, is the arithmetic mean q .  The arithmetic mean for n independent observations is 

given by: 

 

4.4 The experimental standard deviation s(qk) is used to estimate the distribution of q. 

 

4.5 The experimental standard deviation of the mean s( q ) is used to estimate the spread of the 

distribution of the means. 

 

4.6 One important factor deciding the number of readings required in a measurement process is 

the permissible precision error of the parameter. Averaging a set of readings is a common 

technique for reducing the random error of the result. However, the benefit gets 

progressively less as the number is increased and it is usually not necessary to make more 

than ten measurements.[3] 

 

4.7 For a quantity determined from n independent repeated observations, the Type A standard 

uncertainty u, with degrees of freedom  is : 

 

4.8 The degrees of freedom  should always be given when Type A evaluation of uncertainty 

components are documented. 
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4.9 It is sometimes commercially impractical to investigate the Type A standard uncertainty for 

every measurement. Where a practical type of measurement is performed frequently, 

provided there are no change in the measurement system or procedure, it may be sufficient 

to estimate an uncertainty in terms of an investigation carried out earlier, and verified at 

discrete intervals of time to ensure that the measurement has not been degraded. 

 

 4.10 For a well-characterized measurement under statistical control, a pooled experimental 

standard deviation  sp, with degrees of freedom  p,  based on  M  series of observations of 

the same variable may be available. The pooled experimental standard deviation is 

determined  by: 

   

 where  si  is the experimental standard deviation from one series of  mi independent repeated 

observations, and has degrees of freedom of i  = mi - 1.  

 

4.11 If a measurand q  of the same variable is determined from n independent observations, the 

Type A standard uncertainty u can be estimated by: 

  

 with effective degrees of freedom = p  

4.12 If an identical test has not previously been carried out, it is sometimes possible to obtain 

acceptable estimates of uncertainty due to random effect by interpolation or extrapolation 

from well-known statistical methods such as linear regression or other appropriate 

investigations. 

 

 

5.0 TYPE B EVALUATION OF STANDARD UNCERTAINTY 

 

5.1 Type B evaluation of standard uncertainty is obtained by means other than the statistical 

analysis of a series of observations. It is usually based on scientific judgement using all 

relevant information available, which may include: 
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- previous measurement data  

- experience with, or general knowledge of the behaviour and property of 

relevant materials and instruments  

  - manufacturer's specification  

  - data provided in calibration and other reports and  

  - uncertainties assigned to reference data taken from data book 

 

5.2 When considering Type B uncertainty, we have to convert the quoted uncertainty to a 

standard uncertainty. Different cases of how this is done are given below. 

 

5.3 Convert a quoted uncertainty that is a stated multiple of an estimate standard deviation to a 

standard uncertainty by dividing the quoted uncertainty by the multiplier. 

 

 Example 

 A calibration report states that the measurement uncertainty is 3 mV at 3 standard  

deviations. The standard uncertainty is then 3 mV divided by 3 which gives 1 mV. 

 

5.4 Convert a quoted uncertainty to a standard uncertainty from the knowledge of the probability 

distribution of the uncertainty. Divide the quoted uncertainty by a factor which depends on 

the probability distribution. 

 

 5.4.1 Rectangular Probability Distribution 

  It is used when uncertainties are given by maximum bound within which all values 

are equally probable. The standard uncertainty is computed by dividing the half-

interval 'a' by 3 . 

 

Rectangular Distribution 

   

  Examples 

a. The measurement accuracy of a voltmeter is ± 0.05 %. The half-interval limit 

is 0.05 % and the standard uncertainty is given by: 

 )11...(
3

%05.0
)( Vu  
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b. The resolution of a digital voltage display is 1 mV.  Thus the interval  is  1 

mV and the half-interval limit is half of 1 mV.  The standard uncertainty is 

then given by: 

 ...(12)mV1x
3

5.0
)( Ru  

     

c. The hysteresis effect of an instrument is 0.1 %. The difference between 

maximum and minimum for the same input gives the interval and the half-

interval limit is half of 0.1 %.  The standard uncertainty is given by: 

 

 )13...(%1.0x
3

5.0
)( Hu   

 

  d. The maximum drift of the value of a capacitance standard between 

calibration intervals is 0.001 pF. The history of the capacitance standard for 

the past few years showed that the capacitance value changed by not more 

than 0.001 pF. The standard uncertainty is then given by: 

 

)14...(
3

pF001.0
)( driftu  

 

 

 5.4.2 Triangular Probability Distribution 

  The triangular distribution is a better model if it is known that most of the values are 

likely to be near the centre of the distribution. The standard uncertainty is computed 

by dividing the half-interval 'a' by 6 . 

 

 

 

 Triangular Distribution 
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                       Example 

 The environmental temperature is controlled such that it is always near the centre of 

the range 20 ± 2 °C.   The half-interval limit is then 2 °C and the standard uncertainty 

is given by: 

)15...(
6

C2
)(

o

Tu  

 

5.4.3 U-Shape Probability Distribution 

  This distribution is used typically in the case of the mismatch uncertainty in radio 

and microwave power frequency power measurement.  At high frequency, the power 

is delivered from a source to a load, and reflection occurs when the impedances do 

not match.  The  mismatch  uncertainty  is  given  by 2 S L . 

   

  S  and L  are the reflection coefficients of the source and the load respectively. 

The standard uncertainty is given by: 

    

      )16...(
2

2
)( LSmu


  

  

 

 

  U-shape Distribution 

  

 Example 

 The output power of a signal generator is measured by a power meter.  The magnitude of the 

reflection coefficients of the signal generator and the power meter is 0.2 and 0.091 

respectively. The standard uncertainty due to the mismatch is given by: 

 

 )17...(
2
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5.4.4 Normal or Gaussian Probability Distribution 

 This distribution form can be assumed for an uncertainty that defines a confidence interval 

having a given level of confidence of say 95 % or 99 %.  The standard uncertainty is 

obtained by dividing the quoted uncertainty by the appropriate factor for such a distribution 

(refer to APPENDIX 2 on the choice of factors).  

   

 Gaussian Distribution 

   

  Examples 

  a. A calibration report states that the uncertainty is ± 0.1 dB with a coverage 

factor of 2.63. The standard uncertainty is given by: 

)18...(
63.2

dB1.0
)( xu   

  

  b. The uncertainty specification on a DC 1 V range is given as ± 5 ppm at a 

confidence level of 99 %. Assuming normally distributed, the standard 

uncertainty is given by: 

 )19...(
2.58

μV5
)( 1 xu  

 

5.5 The rectangular distribution is a reasonable default model in the absence of any other 

information. But if it is known that the value of the quantity in question is near the centre of 

the limits, a triangular or a normal distribution may be a better model. 

 

5.6 Type B uncertainty is obtained from a priori probability distributions. It is implicitly 

assumed that the probability distribution is exactly known. In most cases, we can assume 

that the degrees of freedom for such standard uncertainty as infinite. This is a reasonable 

assumption as it is a common practice to choose a Type B uncertainty such that the 

probability of the quantity in question lying outside the uncertainty band is extremely small. 

(Refer to APPENDIX 1 for treatment of degrees of freedom). 
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6.0 COMBINED STANDARD UNCERTAINTY 

 

6.1 The estimated standard deviation associated with the output estimate or measurement result 

y, termed combined standard uncertainty and denoted by )(yuc , is determined from the 

standard uncertainty )( ixu  associated with each input estimate ix  (refer to section 3 on 

'Modelling the Measurement'). 

 

6.2 The following equations of computing the combined standard uncertainty are based on a first 

order Taylor series approximation of the equation (1). This method is often called the law of 

propagation of uncertainty. 

 

6.3 When the non-linearity of  f  is significant, higher-order terms in the Taylor series expansion 

must be included in the expression for )(2 yuc . 

 

6.4 Uncorrelated Input Quantities 

 

 6.4.1 In the case where all input quantities are statistically independent, their joint 

probability distributions are products of their individual probability distributions. 

 

 6.4.2 The combined standard uncertainty )(yuc  is the positive square root of the 

combined variance )(2 yuc which is given by: 

  )20...()()( i
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i
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  2
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  where  f  is the function given in equation (1) 

 

 6.4.3 The partial derivatives 




f

xi

 are called sensitivity coefficients. They describe how 

the output estimate y varies with changes in the values of the input estimates x1, 

x2, ... xN. The combined variance )(2 yuc can be viewed as a sum of terms. These 

terms represent the estimated variance associated with the output estimate y 

generated by the estimated variance associated with each input estimate xi. 

 

 6.4.4 Denoting 




f

xi

 by ci, the equation (20) can be written as: 
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 

)21...()(

)()(

2

22

yu = 

  

x uc  = yu

i

N

i=1

ii

N

i=1

c





 

 

  where:  ui(y) = ci u (xi) and ci =




f

xi

 

 6.4.5 The sensitivity coefficients 




f

xi

 are sometimes determined experimentally. In this 

case, the knowledge of the function  f  is accordingly reduced to an empirical first-

order Taylor series expansion based on the measured sensitivity coefficients. 

 

 6.4.6 If Y is of the form, ie. Y =  c X  X  .... X1
P

2
P

N
P1 2 N  with the exponents Pi known to be 

positive or negative numbers, the combined variance equation (20) can be expressed 

as: 
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 6.4.7 If each Pi  is either +1 or - 1, equation (22) becomes equation (23) which shows that 

for this special case the relative combined variance associated with the estimate y is 

simply equal to the sum of the estimated relative variances associated with the input 

estimates xi .   
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6.5 Correlated Input Quantities 

 

 6.5.1 In the case where two or more input quantities are interdependent. The appropriate 

expression for the combined variance )(2 yuc  associated with the result of a 

measurement is :  

 )24...()()(2
x, x u

x

f
 

x

f
   = yu ji

ji

N

j=1

N

i=1

c







  

                                            )25...()()()(

2

2
x ,xu 

x

f
 

x

f
   2 + xu

x

f
  = yu ji

ji

N

1+i=j

1-N

1=i

i
2

i

N

1=i

c



















  

 

  where ),( ji xxu is the estimated covariance between ix  and jx  
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 6.5.2 The interdependence of two variables is characterized by their coefficients.  

 )26...(
)()(

)(
)(

xu xu

x ,xu
 = x ,xr

ji

ji

ji    

 6.5.3 With the aid of equation (26) and the sensitivity coefficients, ic described in the 

paragraph 6.4.3 and 6.4.4, the equation (25) becomes: 

 

  


 


1

1 11

222 )27...(),()()(2)()(
N

i

N

ij

jijiji

N

i

iic xxrxuxuccxucyu   

 

 6.5.4 Correlation can occur if the same measurement is used more than once in the same 

measurement process, however, its effect on the combined uncertainty may be 

positive, i.e. the uncertainty is increased or negative which will lead to a reduction in 

the uncertainty. 

 

 6.5.5 If positive correlation is suspected but the correlation coefficient cannot be easily 

calculated then it is reasonable to assume a correlation coefficient of +1 and simply 

add the correlated uncertainty contributions.  

  

 6.5.6 If all of the input estimates are correlated with correlation coefficients 1),( ji xxr , 

equation (27) reduces to : 
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 6.5.7 “In the case of two randomly varying quantities q and r, with their respective means  

q  and  r  calculated from n independent pairs of simultaneous observations of q and 

r made under the same conditions of measurement, the covariance is estimated by:” 

 

 )29...()()(),( r-r q-q 
1)-n(n

1
 = rqs kk

n

=1k

   

 

  where q, and r are the individual observations made simultaneously. 
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 6.5.8 For two correlated input quantities iX  and jX , the correlation coefficient is 

obtained from equation (26).  

 
)30...(
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7.0 EXPANDED UNCERTAINTY 

 

7.1 While the combined standard uncertainty )(yuc  can be used to express the uncertainty of 

measurement results, many applications required a measure of uncertainty that defines an 

interval about the measurement result y within which the value of the measurand Y can be 

confidently asserted to lie. 

 

7.2 The measure of uncertainty intended to meet this requirement is termed expanded 

uncertainty, denoted by symbol U and is obtained by multiplying )(yuc  by a coverage 

factor. Thus   )( yukU c   and it can be confidently asserted that  UyYUy   , 

commonly written as UyY  . 

 

 Current international practice is to give a level of confidence of approximately 95 % 

(95.45 %).  When level of confidence is fixed, k varies with effective degrees of freedom.  

Although in many cases, k equal to 2 can be used where effective degrees of freedom is 

reasonably large, greater or equal to 30.  For cases where effective degrees of freedom is 

small, it is necessary to obtain the value of k using the t-distribution table.  The calculation of 

effective degrees of freedom is outlined in Appendix 1. 

 

7.3 In certain cases, whereby )(yuc  is dominated by one component of uncertainty derived from 

Type B evaluation, the use of k value obtained from the t-distribution table is likely to give 

an interval corresponding to a level of confidence more than approximately 95 %.  In this 

situation, knowledge of the assumed probability distribution of the measurand Y is required 

to obtain the value of k that produces an interval corresponding to a level of confidence of 

approximately 95 %.  Refer to Annex G of Reference [1] 

 

8.0 REPORTING OF RESULTS 

 

8.1 In stating the measurement result in the calibration report, the following information shall be 

provided. 

 a. the measurement result, 

 b. the expanded uncertainty, 

 c. the level of confidence used in defining the interval of the expanded uncertainty, and 

 d. the coverage factor, k ( and if necessary the effective degrees of freedom ) used in 

defining the interval of the expanded uncertainty. 
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 Example 

  The measurement result is UyY  .  The reported expanded uncertainty of measurement 

is stated as the standard uncertainty of measurement multiplied by the coverage factor k = 2, 

which is for a level of confidence of approximately 95 %.  

 

8.2 The numerical value of the uncertainty of measurement should be given to at most two 

significant figures.  If the rounding brings the numerical value of the uncertainty of 

measurement down by more than 5 %, the rounding up value should be used. 

 

8.3 The numerical value of the measurement result y should in the final statement normally 

be rounded to the least significant figure in the value of the expanded uncertainty 

assigned to the measurement result. 

 

8.4 For  the  process  of   rounding,  the  usual  rules  for  rounding  of  numbers  based   on    

ISO 31-0:1992, Annex B can be used.  To round a number to n significant figures, discard 

all digits to the right of the nth place. If the discarded number is less than one-half a unit 

in the nth place, leave the nth digit unchanged. If the discarded number is greater than 

one-half a unit in the nth place, increase the nth digit by 1.  If the discarded number is 

exactly one-half a unit in the nth place, leave the nth digit unchanged if it is an even 

number and add 1 to it if it is odd. 

 

Examples of rounding a number to four significant figures. 

 20.453 mm   20.45 mm 

 20.456 mm   20.46 mm 

 20.455 mm   20.46 mm 

 20.465 mm   20.46 mm 

 

 

9.0 CONCLUSION  

 

9.1 When evaluating the measurement uncertainty, it is important not to 'double-count' 

uncertainty components. If a component of uncertainty arising from a particular effect is 

obtained from a Type B evaluation, it should be included as an independent component of 

uncertainty in the calculation of the combined standard uncertainty of the measurement 

result only to the extent that the effect does not contribute to the observed variability of the 

observations. This is because the uncertainty due to that portion of the effect that contributes 

to the observed variability is already included in the component of uncertainty obtained from 

statistical analysis of the observations. 

 

9.2 Although this guide provides a framework for evaluating uncertainty, it cannot replace 

analytical thinking, skill and professionalism. The treatment of uncertainty is neither a 

routine task nor a purely mathematical one; it depends on detailed knowledge of the nature 

of the measurand and of the measurement system. The quality and usage of the measurement 

uncertainty quoted ultimately depends on the knowledge, critical investigation, and integrity 

of those who contribute to the assignment of the value. 
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  1 To estimate the value of such a coverage factor requires taking into account the 

uncertainty of )(yuc , which is characterized by the "effective degrees of freedom," eff , 

of )(yuc .  For example, if eff  is less than 11, simply assuming that the uncertainty of 

)(yuc  is negligible and taking k = 2 may be inadequate if an expanded uncertainty 

)(yukU c that defines an interval having a level of confidence close to 95 % is required 

for a specific application. In this case, and in other similar cases where eff  of )(yuc is 

comparatively small and an interval having a level of confidence close to a specified level 

is required, it is unlikely that the uncertainty of )(yuc  would be considered negligible.  

Instead, the small value of eff , and thus the uncertainty of )(yuc , would probably be 

taken into account when determining k. 

 

 2 The four-step procedure for calculating k is as follows : 

 

 1) Obtain y and )(yuc . 

 2) Estimate the effective degrees of freedom eff  of )(yuc  from the Welch-

Satterthwaite formula: 

 





N

i i

ii

c

eff
xuc

yu

1

44

4

)(

)(



  

 

  where 
i

i
x

f
c




 , all of the )( ixu  are mutually statistically independent, i  is the 

degrees of freedom of )( ixu  and  





N

i

ieff

1

  

 

  The degrees of freedom of a standard uncertainty )( ixu obtained from Type A  

evaluation,  where  ii Xx   and )()( ii Xsxu  , is 1 ni .  If m parameters are 

estimated by fitting a curve to an n data points by the method of least squares, the 

degrees of freedom of the standard uncertainty of each parameter is n - m. 

 

  The degrees of freedom associated with a standard uncertainty )( ixu , obtained from 

a Type B evaluation with lower and upper limits 
a and 

a , are set in such a way 

that the probability of the quantity in question lying outside these limits is in fact 

extremely small, the degrees of freedom may be taken to be i . Otherwise, the 

following equation may be used to define the degrees of freedom,  , that is to be 

associated with a standard uncertainty )( ixu obtained from a Type B evaluation : 
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 
2

2

2

)(

)(

2

1

)(

)(

2

1























i

i

i

i

xu

xu

xu

xu




 

 

  The quantity in large brackets is the relative uncertainty of )( ixu , which for a Type 

B evaluation is a subjective quantity.  This value is to be obtained from experience 

and knowledge of the measurement procedures. 

   

  Example : 

  Assume it is judged that the evaluation of )( ixu  is reliable to about 25 %.  Then it 

may be taken to mean that the relative uncertainty 0.25 
)(

)(
= 

xu

xu

i

i
 and from the 

above equation 8
2

25.0 2




  

 

 3) Obtain the t-factor )( effpt  for the required level of confidence p from a table of 

values of )(pt from the Student's t-distribution, (given in APPENDIX 2.)  If eff is 

not an integer, which will usually be the case, either interpolate or truncate eff to the 

next lower integer. 

  

 4) Take )( effptk  and calculate )(yukU c . 
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t-DISTRIBUTION  

Value of )(pt  from the t-distribution for degrees of freedom  that defines an interval )(pt  to 

)(pt that encompasses the fraction p of the distribution 

 

Degrees 

of freedom 

 

 

Fraction p in percent 

 68.27(a) 90.00 95.00 95.45(a) 99.00 99.73(a) 

1 1.84 6.31 12.71 13.97 63.66 235.8 

2 1.32 2.92 4.30 4.53 9.92 19.21 

3 1.20 2.35 3.18 3.31 5.84 9.22 

4 1.14 2.13 2.78 2.87 4.60 6.62 

5 1.11 2.02 2.57 2.65 4.03 5.51 

6 1.09 1.94 2.45 2.52 3.71 4.90 

7 1.08 1.89 2.36 2.43 3.50 4.53 

8 1.07 1.86 2.31 2.37 3.36 4.28 

9 1.06 1.83 2.26 2.32 3.25 4.09 

10 1.05 1.81 2.23 2.28 3.17 3.96 

       

11 1.05 1.80 2.20 2.25 3.11 3.85 

12 1.04 1.78 2.18 2.23 3.05 3.76 

13 1.04 1.77 2.16 2.21 3.01 3.69 

14 1.04 1.76 2.14 2.20 2.98 3.64 

15 1.03 1.75 2.13 2.18 2.95 3.59 

       

16 1.03 1.75 2.12 2.17 2.92 3.54 

17 1.03 1.74 2.11 2.16 2.90 3.51 

18 1.03 1.73 2.10 2.15 2.88 3.48 

19 1.03 1.73 2.09 2.14 2.86 3.45 

20 1.03 1.72 2.09 2.13 2.85 3.42 

       

25 1.02 1.71 2.06 2.11 2.79 3.33 

30 1.02 1.70 2.04 2.09 2.75 3.27 

35 1.01 1.70 2.03 2.07 2.72 3.23 

40 1.01 1.68 2.02 2.06 2.70 3.20 

45 1.01 1.68 2.01 2.06 2.69 3.18 

       

50  1.01 1.68 2.01 2.05 2.68 3.16 

100 1.005 1.660 1.984 2.025 2.626 3.077 

∞ 1.000 1.645 1.960 2.000 2.576 3.000 

(a)For a quantity z described by a normal distribution with expectation  z  and standard deviation  , the 

interval z  ± k encompasses p = 68.27, 95.45, and 99.73 percent of the distribution for k = 1, 2 and 3, 

respectively. 
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FLOWCHART OF SUMMARY FOR EVALUATING UNCERTAINTY OF MEASUREMENT 

 

 

 

 

              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Type A 

Evaluation 

Mathematical Model 

Derive or estimate the functional 

relationship between the measured 

quantity Y and its N input quantities Xi. 

Obtain Input Quantities 

Determine xi, the estimated value of 

input quantity Xi, either by a series of n 

observations or by other means 

Uncertainty Equation 

List all possible sources of error in the 

measurement process and determine the 

uncertainty equation 

Standard 

Uncertainty 

Evaluation 

START 

Type B 

Evaluation 

Standard 
Uncertainty 
Evaluation 

Completed? 
Completed ? 

 

No 

END 

Calculate Combined Standard Uncertainty 

Calculate Expanded Uncertainty 

Reporting of Uncertainty 

Yes Yes 

Type B Type A 
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FLOWCHART FOR EVALUATING TYPE A STANDARD UNCERTAINTY  

 

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

        

 

 

    

Calculate the mean of n readings





n

k
kq

n
q

1

_ 1
 

Calculate the standard deviation of n 

readings     




















n

k

kk qq
n

qs

1

2
_

1

1
)(  

Calculate the standard deviation of 

the mean      

      
n

qs
qs k )(

)(
_

  

Assign the standard deviation of the 

mean to Type A standard uncertainty

)()(
_

qsxu i   

 

Decide 

statistical 

methods 

Evaluation 

Calculate the degrees of freedom

1 ni  

 

By pooled experimental 

standard deviation, linear 

regression, or other 

recognised statistical methods 

 

Pooled experimental standard 

deviation method 

 

Pooled experimental standard 

deviation 








M

i

i

M

i

ii

p

s

s

1

1

2





 

 

Degrees of freedom 





M

i

ip

1

  

 

Type A standard uncertainty 

n

s
xu

p

i )(  

Type A standard 

uncertainty evaluation 

END 

Type A Standard 
Uncertainty 

START 

 

START 
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FLOWCHART FOR EVALUATING TYPE B STANDARD UNCERTAINTY 

 

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

        

 

 

 

Assign or estimate the uncertainty U or 

half range of limits a, and probability 

distribution of type B input quantity 

Type B standard 

uncertainty evaluation 

END 

Calculate type B standard uncertainty 

based on probability distribution 

others.or

6
)(:Triangular

2
)(:shapeU

3
)(:rRectangula

)(:Normal

a
xu

a
xu

a
xu

k

U
xu

i

i

i

i









 

Degrees  
of freedom 
provided? 

Probability 
 of input 
quantities 
lying outside 
limits 
extremely 
low? 

Obtain degrees 

of freedom 

i  Estimate degrees 

of freedom 

i  

Estimate degrees of 

freedom 
2

)(

)(

2

1












i

i
i

xu

xu
  

Yes 

Yes 

No 

No 

Type B standard 

uncertainty evaluation 

START 
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FLOWCHART FOR COMBINING UNCERTAINTY  

 

 

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

  

 

 

Calculate the sensitivity 

coefficients for each of the input 

quantities 

i
i

x

f
c




  

 

Input 

quantities 

correlated? 

Calculate the combined uncertainty 

for uncorrelated input quantities 

 

 











N

i

i

N

i

iic

yu

xucyu

1

2

1

2

)(

)()(

 

Calculate combined 

uncertainty 

END 

Calculate the sensitivity 

coefficients for each of the input 

quantities 

i
i

x

f
c




  

 

Calculate or estimate the 

correlation coefficients 

__

__

)()(

),(
),(

ji

ji

ji

XsXs

XXs
xxr   

Calculate the combined standard uncertainty for correlated 

input quantities 

 

  


 



1

1 1

,

1

2
)()()(2)()(

N

i

N

ij

jijiji

N

i

iic xxrxuxuccxucyu  

Yes No 

Calculate combined 

uncertainty 

START 
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FLOWCHART FOR CALCULATING EXPANDED UNCERTAINTY  

 

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

Calculate expanded 

uncertainty evaluation 

END 

Calculate the effective degrees of freedom 

of the combined standard uncertainty 

 













N

i i

i

c

N

i i

ii

c
eff

yu

yu

xuc

yu

1

4

4

1

4

4

)(

)(

)(

)(







 

Obtain the coverage factor k  from the “t” 

distribution table at the appropriate 

degrees of freedom and level of 

confidence. 

Calculate the expanded uncertainty 

 

)(yukU c  

 

Calculate expanded 

uncertainty 

START 
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a Half-width of a rectangular distribution of possible values of input quantity 

iX  : 2)(   aaa  

 

a  Upper bound, or upper limit, of input quantity iX  

 

a  Lower bound, or lower limit, of input quantity iX  

 

ic  Partial derivative or sensitivity coefficient: ii xfc   

 

f Functional relationship between measurand Y and input quantities iX  on 

which Y depends, and between output estimate y and input estimates ix  on 

which y depends 

 

ixf   Partial derivative with respect to input quantity iX  of functional 

relationship f between measurand Y and input quantities iX  on which Y 

depends, evaluated with estimates ix  for the iX  : 

Nii xxxXfxf ,,, 21   

k Coverage factor used to calculate expanded uncertainty )(yukU c of 

output estimate y from its combined standard uncertainty )(yuc , where U 

defines an interval Y = y  U having a high level of confidence 

 

n Number of repeated observations 

 

N Number of input quantities iX on which measurand Y depends 

 

P Probability; level of confidence: 0  p  1 

 

q Randomly varying quantity described by a probability distribution 

 

q  Arithmetic mean or average of n independent repeated observations kq of 

randomly-varying quantity q; estimate of the expectation or mean q of the 

probability distribution of q 

 

kq  kth independent repeated observation of randomly-varying quantity q 

 

),( ji xxr  Estimated correlation coefficient associated with input estimates ix  and jx  

that estimate input quantities iX and jX : )()(),(),( jijiji xuxuxxuxxr    

 

),( ji XXr  Estimated correlation coefficient of input means iX  and jX , determined 

from n independent pairs of repeated simultaneous observations kiX ,  and 

kjX , of iX  and jX ; )()(),(),( jijiji XsXsXXsXXr   
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2

Ps  Combined or pooled estimate of variance  

 

Ps  Pooled experimental standard deviation, equal to the positive square root 

of 2

Ps  

 

)(2 qs  Experimental variance of the mean q ; estimate of the variance 
2 /n of 

nqsqsq k )()(: 22  ; estimated variance obtained from a Type A 

evaluation 

 

s( q ) Experimental standard deviation of the mean q , equal to the positive 

square root of )(2 qs ; s( q ) is a biased estimator of  ( q ); standard 

uncertainty obtained from a Type A evaluation 

 

)(2

kqs  Experimental variance determined from n independent repeated 

observations kq of q; estimate of the variance 
2  of the probability 

distribution of q 

 

)( kqs  Experimental standard deviation, equal to the positive square root of  

)(2

kqs ; )( kqs is a biased estimator of the standard deviation  of the 

probability distribution of q 

 

),( rqs  Estimate of the covariance of means q  and r that estimate the expectations 

q and r of two randomly-varying quantities q and r, determined from n 

independent pairs of repeated simultaneous observations kq  and kr  of q 

and r; estimated covariance obtained from a Type A evaluation 

 

),( ji XXs  Estimate of the covariance of input means iX  and jX , determined from n 

independent pairs of repeated simultaneous observations kiX ,  and kjX ,  

of iX  and jX ; estimated covariance obtained from a Type A evaluation 

 

)(pt  t-factor from the t-distribution for   degrees of freedom corresponding to 

a given probability p 

 
)( effpt   t-factor from the t-distribution for eff  degrees of freedom corresponding 

to a given probability p, used to calculate expanded uncertainty Up 

 

)(2

ixu  Estimated variance associated with input estimate ix  that estimates input 

quantity iX   

NOTE : When ix  is determined from the arithmetic mean or average of n 

independent repeated observations , )()( 22
ii Xsxu   is an 

estimated variance obtained from a Type A evaluation 
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)( ixu  Standard uncertainty of input estimate ix  that estimates input quantity iX , 

equal to the positive square root of )(2

ixu  

NOTE: When ix  is determined from the arithmetic mean or average of n 

independent repeated observations, )()( ii Xsxu   is a standard 

uncertainty obtained from a Type A evaluation 

 

),( ji xxu  Estimated covariance associated with two input estimates ix  and jx  that 

estimate input quantities iX  and jX   

NOTE: When ix  and jx  are determined from n independent pairs of 

repeated simultaneous observations, ),(),( jiji XXsxxu   is an 

estimated covariance obtained from a Type A evaluation 

 

)(2 yuc  Combined variance associated with output estimate y 

 

)(yuc  Combined standard uncertainty of output estimate y, equal to the positive 

square root of )(2 yuc  

 

ii xxu )(  Relative standard uncertainty of input estimate ix  

 

 2)( ii xxu  Estimated relative variance associated with input estimate ix  

 

U 
Expanded uncertainty of output estimate y that defines an interval Y = y  

U having a high level of confidence, equal to coverage factor k times the 

combined standard uncertainty )(yuc of y : )(yukU c  

 

ix  
Estimate of input quantity iX  

NOTE: When ix  is determined from the arithmetic mean or average of n 

independent repeated observations, ii Xx   

 

iX  ith input quantity on which measurand Y depends 

 

NOTE: iX  may be the physical quantity or the random variable  

 

iX  
Estimate of the value of input quantity iX , equal to the arithmetic mean or 

average of n independent repeated observations kiX ,  of iX  

 

kiX ,  kth independent repeated observation of iX  

 

 

y Estimate of measurand Y; result of a measurement; output estimate 

 

Y A measurand 
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)(

)(

i

i

xu

xu
 

Estimated relative uncertainty of standard uncertainty )( ixu  of input 

estimate ix  

 

q Expectation or mean of the probability distribution of randomly-varying 

quantity q 

 

  Degrees of freedom (general) 

 

i  Degrees of freedom, or effective degrees of freedom, of standard 

uncertainty )( ixu  of input estimate ix  

 

eff  Effective degrees of freedom of )(yuc , used to obtain )( effpt  for 

calculating expanded uncertainty pU  

 
2  Variance of a probability distribution of (for example) a randomly-varying 

quantity q, estimated by )(2

kqs  

 

  Standard deviation of a probability distribution, equal to the positive 

square root of 2 ; )( kqs is a biased estimator of   

 

)(2 q  Variance of q , equal to n2 , estimated by nqsqs k )()( 22   

 

 ( q ) Standard deviation of q , equal to the positive square root of 2 ( q ); s( q ) 

is a biased estimator of  ( q ) 

 

 )(2 qs  
Variance of experimental standard deviation s( q ) of q  

 

 )(qs  

Standard deviation of experimental standard deviation s( q ) of q , equal to 

the positive square root of  )(2 qs  
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12 WORKED EXAMPLES 

 

 There are a total of fourteen examples in this guide. 

 

 EG 1: Digital thermometer calibration  

 EG 2: Temperature measurement using thermocouple   

 EG 3: Calibration of platinum resistance thermometer (PRT) 

 EG 4: DC current measurement 

 EG 5: Calibration of the DC 20V range of a multimeter   

 EG 6: Harmonic measurement   

 EG 7: Power reference 

 EG 8: Transition time 

 EG 9: Calibration of an industrial pressure gauge  

 EG 10: Torque tester calibration  

 EG 11: Calibration of weighing machine   

 EG 12: Coordinate measuring machine measurement   

 EG 13: Micrometer calibration 

 EG 14: Illumination meter calibration 

 

 These examples are used to demonstrate and teach and are not to be considered as definitive 

analyses for these parameters.  The uncertainty contributions in the examples are not defined 

or recommended or should be since these are dependent on the equipment used and the 

method of test. 
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ACJC 

+ - 

TC (N) - 

ACJC 

 

1.0 INTRODUCTION 

  

Digital thermometers are widely used in industry to measure the electromotive force 

(emfs) produced by thermocouples. Modern digital thermometer comes with automatic 

cold junction compensation (ACJC) with temperature display. A typical schematic circuit 

diagram used in the calibration of digital thermometer is shown in Figure 1. A reference 

temperature is set up using the emf source and thermocouple wire. The reference 

temperature is compared against the temperature indicated in the display of the digital 

thermometer so as to obtain the correction on the digital thermometer. The calculation of 

the expanded uncertainty associated with the correction for digital thermometer 

measuring Type K thermocouple is outlined in this example. 

 

            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 1: Schematic Diagram for Calibration of Digital Thermometer 

   

 where 

 TC(P)*   :   Positive leg of the thermocouple 

  TC(N)*  :   Negative leg of the thermocouple 

  CJ   :    Cold junction of the digital thermometer maintained at ambient                                         

       temperature. 

 

Note : *Digital thermometer can often be configured to measure different types of 

thermocouples.  The type of thermocouple used in the calibration schematic 

diagram must be the same as the type configured for measurement in the digital 

thermometer. 

 

2.0 MATHEMATICAL MODEL 

 

 The correction of the digital thermometer is given by the reference temperature minus the 

displayed temperature of the digital thermometer. 

 

 where, 

 C : Correction of the digital thermometer.  

 
Rt : Reference temperature.   

 
Dt : Displayed temperature of the digital thermometer. 

 

TC (P) + 

CJ 

)1...(DR ttC 

Digital Thermometer 

Automatic reference  

ice point 0oC 

ACJC Display 

EMF Source 

Display ACJC 

CJ 
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3.0 UNCERTAINTY EQUATION 

 

 The combined standard uncertainty for the correction is given by equation (3).  The 

partial derivatives are equal to one. 
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 where, 

 )(Cuc : Combined standard uncertainty for correction. 

 )( Rtu : Standard uncertainty for the reference temperature. 

 )( Dtu : Standard uncertainty for the displayed temperature. 

 

  

4.0 STANDARD UNCERTAINTY EVALUATION 

 

4.1 Determination of the standard uncertainty of the reference temperature )( Rtu  

 The thermocouple wires used in the calibration circuit (Figure 1) have to be calibrated 

separately since it's emf output may deviate from the International Thermocouple Reference 

Table values. The calibration of the Type K thermocouple wires is reported as having a 

correction of 0.0097 mV with an expanded uncertainty of ± 0.0015 mV at a confidence level 

of approximately 95 %, with a coverage factor k equals to 2.  

 

 The reference ice point (Figure 1) has to be calibrated separately. The ice point has a zero 

correction with an expanded uncertainty of ± 0.02 C at a confidence level of approximately 

95 %, with a coverage factor k equals to 2.  

 

 The reference emf 
REFE  is given by equation (4).   

    

 where,  

 
REFE   : Reference emf equivalent to a particular ITS-90 temperature. 

 SOURCEE : Emf output by the emf source. 

 WIREE  : Emf correction for the calibrated thermocouple wires. 

 ICEt   : Temperature correction for the calibrated reference ice-point. 

0C    : Sensitivity coefficient for Type K thermocouple at the reference temperature of  

    0 C,  0.0395 mV/ C. 

    

 The standard uncertainty of the reference emf (
REFE ) is given by equation (5).  

  

)4...(0 ICEWIRESOURCEREF tCEEE 
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where, 

 )( REFEu  : Standard uncertainty of the reference emf. 

 )( SOURCEEu  : Standard uncertainty of the emf source. 

 )( WIREEu   : Standard uncertainty of the correction for the thermocouple wires. 

 )( ICEtu   : Standard uncertainty of the correction for the reference ice point. 

 

The emf source used in the calibration has the following one year specifications from the 

manufacturer.  

      SOURCEE    22 mV  : ± 0.0020 mV   

  22 mV < SOURCEE   <  50 mV : ± 0.0027 mV 

 

 The uncertainty budget table for the reference emf is given in Table 1.  

 

      Table 1 

 

Source of 

Uncertainty 

Symbol 

 

XI 

Type Uncertainty 

value 

 

(mV/C) 

Probability 

distribution 

Coverage 

factor 

Standard 

uncertainty 

(ui)  

(mV) 

Sensitivity 

coefficient 

ci 

)(xc
i i

xu

 

(mV) 

Degrees 

of 

freedom 

  

Emf Source 
mV22SOURCEE  

 
mV50mV22  SOURCEE  

 

SOURCEE  

 

B 

B 

 

0.0020 

0.0027 

 

Rectangular 

Rectangular 

 

1.732 

1.732 

 

0.0012 

0.0016 

 

1 

1 

 

0.0012 

0.0016 

 

 

 

TC wires calibration 
WIREE  B 0.0015 Normal 2.000 0.00075 1 0.00075  

Reference ice point 
ICEt  B 0.02 Normal 2.000 0.01 0.0395 0.000395  

 

 The standard uncertainty )( REFEu of the reference emf is evaluated using equation (5). 

   

 for mV22SOURCEE ,  

 

 for mV50mV22  SOURCEE , 

 

 The effective degrees of freedom for each of the standard uncertainty is infinity. 

  

 The International Thermocouple Reference Table gives the relationship between the 

temperature and emf. The standard uncertainty of reference temperature )( Rtu can be 

expressed in terms of the standard uncertainty of the reference emf, )( REFEu . 
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 The 








dE

dT

REFE

values are calculated from Type K International Thermocouple Reference 

Table. For emf equal or less than 22 mV (corresponding to reference temperature from the 

range   –200C to 500C), the maximum calculated 








dE

dT

REFE

is 
0.015

1
 (C/mV). Whereas, 

for reference emf greater than 22 mV (corresponding to reference temperature of 600 C to 

1200 C), the maximum calculated 








dE

dT

REFE

is  
0.036

1
 (C/mV).  

 

 The standard uncertainty of reference temperature )( Rtu  is given in Table 2. This is 

evaluated using Equation 6. 

Table 2 

 

Source of 

Uncertainty 
)( REFEu  

 

(mV) 

ci =

REFEE

T












 

(C/mV) 

)( Rtu  

 

(C) 

Degrees of 

freedom 

i
  

Reference emf  

mV22
REF

E  

(-200 C to 500 C) 

 

0.0015 

 

0.015

1  

 

0.100 

 

 

Reference emf  

mV50mV22 
REF

E  

 (600 C to 1200 C) 

 

0.0019 

 

0.036

1  

 

0.053 

 

 

 

 

4.2 Determination of the standard uncertainty in the displayed temperature )( Dtu  

 

 With a high resolution emf source, it is possible to change the emf signal over a small range 

of values without producing a change in the displayed reading on the digital thermometer. 

As a result, there is a range of emf signals to the digital thermometer that gives the same 

displayed reading. This is one source of uncertainty of a digital instrument due to the 

resolution of its indicating device. 

 

 The maximum value )( a and minimum value )( a of the emf signals that give the same 

indication on the digital thermometer are averaged to give the nominal emf value. This can 

be experimentally performed by slowly approaching each chosen scale mark in one direction 

and then repeat by slowly approaching from the other direction. The maximum size of this 

range )(  aa  is usually equals to the resolution of the digital thermometer )( a . 

 

 If this technique is used in the calibration, the probability that the nominal emf value lies 

within the interval a- to a+ for all practical purposes is equal to one and the probability that 

the nominal emf value lies outside this interval is essentially zero. It is assumed that it is 

equally probable for the nominal emf to lie anywhere within the interval and therefore,  
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 a rectangular distribution is assumed with a half width of 
2

a
. The standard uncertainty in 

the displayed reading is given by equation (7). 

 

   

 

 For resolution of 0.1 C and 1.0 C, )( Dtu  is equal to 0.029 C and 0.29 C respectively. 

The degrees of freedom associated with the standard uncertainty of the displayed 

temperature )( Dtu  is infinity.  

 

 

5.0 CALCULATION OF THE COMBINED STANDARD UNCERTAINTY )(Cuc  AND 

EXPANDED UNCERTAINTY U  

 

 The calculations of the combined standard uncertainty and expanded uncertainty associated 

with the correction for Type K thermocouple are outlined in Table 3. The degrees of 

freedom of both the standard uncertainties of the reference temperature )( Rtu and the 

displayed temperature )( Dtu  are equal to infinity. As a result, the degrees of freedom for the 

combined standard uncertainty )(Cuc  is also equal to infinity. This gives a coverage factor k 

equals to 2 at a confidence level of approximately 95 %. 

 

Table 3 

 

Range  u(tR) 

(C) 

u(tD) 

(C) 

uc(C) 

(C) 

U=k uc(C) 

(C) 

-200 C to 500 C with 

0.1 C resolution 

1 C resolution 

 

0.100 

0.100 

 

0.029 

0.29 

 

0.105 

0.307 

 

0.21 

0.62 

600 C to 1200 C with 

0.1 C resolution 

1 C resolution 

 

0.053 

0.053 

 

0.029 

0.29 

 

0.061 

0.295 

 

0.13 

0.59 

 

 The expanded uncertainty associated with the correction is given by )(CukU c  in Table 3 at 

a confidence level of approximately 95 % with coverage factor k equals to 2.  
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1.0 INTRODUCTION 

 

A digital thermometer with a Type K thermocouple are used to measure the temperature                   

inside a temperature chamber.  The temperature controller of the chamber is set at 400 °C. 

 

      

 

 

 

 

 

 

 

 

 

     Figure 1 : Measurement set-up 

 

1.1 Digital thermometer specification 

 Resolution : 0.1 °C 

 Uncertainty (one year) : ± 0.6 °C 

 

1.2 Thermocouple 

 The calibration report of the Type K thermocouple gives an uncertainty of ± 1.0 °C at 

confidence level of approximately 95 % with a coverage factor k equals to 2.0.  The 

correction for the thermocouple at 400 °C is 0.5 °C.  

  

1.3 Measurement record 

 When the temperature chamber indicator reached 400 °C, the readings are taken after a 

stabilisation time of half an hour. Ten measurements are taken as given in Table 1. 

Table 1 

Measurement ( i ) T i(°C) 

1 400.1 

2 400.0 

3 400.1 

4 399.9 

5 399.9 

6 400.0 

7 400.1 

8 400.2 

9 400.0 

10 399.9 

 

 

 

Type K thermocouple 

Temperature controller set at 400 °C 

400.0 

Digital Thermometer 
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2.0 MATHEMATICAL MODEL 

 

 The test temperature tx is given by: 

 

where 

 

  trdg  : temperature reading of the Type K thermocouple. 

  ttc : temperature correction of the Type K thermocouple reading based on its 

calibration data.  

   timm : temperature correction due to immersion error of the Type K thermocouple. 

  tdrift  : temperature correction due to drift of the Type K thermocouple.  

  tind  : temperature correction due to deviation of the digital thermometer.  

  tres    : temperature correction due to the resolution of the digital thermometer. 

 

 

3.0 UNCERTAINTY EQUATION 

 

 The combined standard uncertainty uc(tx) of the test temperature is given by: 

 

 

 where 

 

  u(trdg) : standard uncertainty of the Type K thermocouple reading. 

  u(ttc) : standard uncertainty of the Type K thermocouple correction.  

  u(timm)  : standard uncertainty of the Type K thermocouple immersion correction. 

   u(tdrift) : standard uncertainty of the Type K thermocouple drift correction. 

   u(tind) : standard uncertainty of the digital thermometer deviation correction.  

   u(tres)   : standard uncertainty of the digital thermometer resolution correction. 

 

 

4.0 STANDARD UNCERTAINTY EVALUATION 

 

4.1 Type A evaluation 

4.1.1 Standard uncertainty of the thermocouple reading, u(trdg)  

     

 Where Ti are the ten measurements taken as listed in Table 1.  

  

 Standard deviation of the mean : 
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 Thus the standard uncertainty of the thermocouple reading u(trdg) is 0.033 °C. 

 Degrees of freedom :  = n - 1 = 10 - 1 = 9 

 

 

4.2 Type B evaluation 

 

4.2.1 Standard uncertainty of the thermocouple correction u(ttc) 

 

 The correction for the thermocouple reading is 0.5 C. The standard uncertainty of 

thermocouple correction u(ttc) is : 

  

 Degrees of freedom :  =  

 

4.2.2 Standard uncertainty of the thermocouple immersion correction u(timm) 

 

The uncertainty limit of the thermocouple immersion correction is  0.1 °C. Assuming a 

rectangular distribution, standard uncertainty of the thermocouple immersion correction 

u(timm) is, 

  

 

 Degrees of freedom :  =  

 

4.2.3 Standard uncertainty of the thermocouple drift correction u(tdrift) 

 

 The uncertainty limit of the drift is  0.2°C. Assuming a rectangular 

distribution, standard uncertainty of the thermocouple drift correction u(tdrift) is, 

  

 Degrees of freedom :  =  

 

4.2.4 Standard uncertainty of the digital thermometer deviation correction u(tind) 

   

 From specification, the uncertainty limit of the digital thermometer is ± 0.6 °C. Assuming a 

rectangular distribution, the standard uncertainty of the digital thermometer deviation 

correction u(tind) is, 

  

 Degrees of freedom :   =   
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4.2.5 Standard uncertainty of the digital thermometer resolution correction u(tres)   

 

 The half limit due to the resolution of the digital thermometer is 0.05 °C. Assuming a 

rectangular distribution, the standard uncertainty of the digital thermometer resolution 

correction u(tres) is, 

 Degrees of freedom :   =   

 

 

5.0 UNCERTAINTY BUDGET TABLE 

 

Source 

of Uncertainty 

Symbol 

(xi) 

Type Uncertainty 

Value  

(°C) 

Probability 

Distribution 

Coverage 

Factor 

Standard 

Uncertainty 

u(xi) 

(°C) 

Sensitivity 

Coefficient 

ci 

ci x u(xi) 

 

(°C) 

Degrees 

of 

freedom

() 

Repeatability of 

thermocouple 

reading 

u(trdg) 
A 0.033 - - 0.033 1 0.033 9 

Thermocouple 

correction 
u(ttc) 

B 1.0 Normal 2.000 0.500 1 0.500  

Thermocouple 

immersion 

correction 

u(timm) 
B 0.1 Rectangular 1.732 0.058 1 0.058  

Thermocouple 

drift correction  
u(tdrift) 

B 0.2 Rectangular 1.732 0.115 1 0.115  

Digital 

thermometer 

deviation 

correction  

u(tind) 
B 0.6 Rectangular 1.732 0.346 1 0.346  

Digital 

thermometer 

resolution 

correction  

u(tres) 
B 0.05 Rectangular 1.732 0.029 1 0.029  

 

6.0 COMBINED STANDARD UNCERTAINTY  

 

 The combined standard uncertainty )( xc tu of the measured temperature is : 

  

 

7.0 EFFECTIVE DEGREES OF FREEDOM 

 

 Effective degrees of freedom of the combined standard uncertainty is : 
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8.0 EXPANDED UNCERTAINTY 
 

 The effective degrees of freedom for the combined standard uncertainty )( xc tu  was assumed 

to be infinity. This gives a coverage factor k equals to 2 at a level of confidence of 

approximately 95 %. Therefore the expanded uncertainty is : 

 

 

 

9.0 REPORTING OF RESULTS 

 

 The temperature of the chamber after taking into consideration the correction of the 

thermocouple is 400.5 °C. The measurement uncertainty is ± 1.3 °C, estimated at a level of 

confidence of approximately 95 % with a coverage factor k equals to 2. 
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1.0 INTRODUCTION 

 

 A semi-standard 100 ohm platinum resistance thermometer (PRT) was calibrated by 

comparison against a 25 ohm Standard Platinum Resistance Thermometer (SPRT) 

traceable to the International Temperature Scale 1990 (ITS-90). The calibration was 

carried out at nominal temperatures of 0 C, 50 C, 100 C, 190 C, 230 C, 315 C and 

420 C using three different types of fluid circulating baths. The schematic diagram of the 

PRT calibration is as shown in Figure 1. 

The measurement data are given in Table 1. These data were collected in ascending order 

of temperatures in degree Celsius. The resistance of the PRT at 0 C was measured twice, 

at the beginning and at the end of the calibration using an ice-pot. The temperatures of the 

baths were measured by the SPRT. The PRT resistance measurements were carried out at 

1 mA current that did not include any equivalent resistance due to thermal emf in the PRT.  

      

Table 1 

 

SPRT temperature  

[tSPRT :C] 

PRT resistance 

[RPRT :] 

0.000 100.021 

50.131 119.498 

99.763 138.489 

189.869 172.232 

229.996 186.955 

315.008 217.539 

419.573 254.023 

0.000 100.019 

 

 

2.0 MATHEMATICAL MODEL 

 

The uncertainty evaluation was carried out in two parts. Firstly, determination of the test 

temperature of which the PRT was calibrated and, secondly, determination of the 

resistance of the PRT at the test temperature.  

 

 

SPRT Indicator

Water / Oil / Salt

Bath

Bath

Controller

99.763 oC

PRT Indicator

138.489 ohm

Figure 1:Schematic diagram for PRT calibration

Equalization block

SPRT
PRT

Fluid
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 The test temperature (tx) was given by: 

 

 

 The resistance (Rx) of the PRT at test temperature was given by: 

 

 

where 

 

 tSPRT   : temperature of the SPRT. 

     RPRT  : measured resistance of the PRT at test temperature. 

           rind ,Rind : resistance correction due to deviation of the indicator of the thermometer. 

   rres ,Rres  : resistance correction due to resolution of the indicator of the thermometer. 

   trep/Rrep  : temperature/resistance correction due to repeatability of the SPRT and PRT. 

    timm/Rimm : temperature/resistance correction due to immersion error. 

         theat   : temperature correction due to self-heating effects of the SPRT. 

          tdrift   : temperature correction due to drift of the SPRT since last calibration. 

          tbath   : temperature correction due to non-uniformity of bath temperature. 

   Rhys       : resistance correction due to PRT hysteresis. 

   cSPRT   : sensitivity coefficient of SPRT (T/R). 

 

 

3.0 UNCERTAINTY EQUATION 

 

The combined standard uncertainty uc(tx) of the test temperature was given by: 

 

 

 

 The combined standard uncertainty uc(Rx) of the PRT resistance at test temperature was 

given by: 
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 where 

 u(tSPRT)   :  standard uncertainty of the SPRT. 

 u(RPRT)  : standard uncertainty of measured resistance of the PRT at test 

temperature was given by the combined standard uncertainty (uc(tx)) 

of the test temperature evaluated in Equation 3 divided by the 

sensitivity coefficient of PRT (cPRT). (= uc(tx)/ cPRT). 

  u(rind),u(Rind) :  standard uncertainty of the indicator correction.  

u(rres),u(Rres)   : standard uncertainty of the indicator’s resolution correction. 
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 u(trep), u(Rrep)  : standard uncertainty of the SPRT and PRT repeatability. 

           u(timm),u(Rimm) : standard uncertainty of the SPRT and PRT immersion correction. 

 u(theat)   : standard uncertainty of the SPRT self-heating effects correction. 

 u(tdrift)   : standard uncertainty of the SPRT drift correction. 

           u(tbath)    : standard uncertainty of the temperature correction for bath non-

uniformity bath. 

               u(Rhys)    : standard uncertainty of the PRT hysteresis correction. 

          cPRT   : sensitivity coefficient of PRT (T/R). 

 

The typical sensitivity coefficient (cSPRT) of a 25 ohm SPRT is 10.0 C/, whereas the 

typical sensitivity coefficient (cPRT) of a 100  PRT is 2.5 C/, and the inverse of cPRT 

(1/cPRT), as required in Equation 4 is 0.4 /C.  

 

4.0 EVALUATION OF UNCERTAINTY 

 

No correction was applied to any of the correction terms stated in Equation 1 and 2. 

 

Symbol Information Uncertainty  

value 

tSPRT The SPRT calibration certificate stated that expanded 

uncertainty (U) was 0.004 C with a coverage factor k = 

2. 

 

 0.004 C 

rind / 

Rind 

The specifications of the SPRT and PRT indicators were  

0.0002  and 0.008  respectively.  

 

 0.0002  [1] / 

 0.008   

rres / 

Rres 

No correction was applied due to the resolution of the 

indicator. The uncertainty value associated with this 

correction was taken to be half of the least significant 

digit of the indicator. 

  

SPRT indicator’s resolution: 0.0001 , 

PRT indicator’s resolution  : 0.001  

 

 0.00005  / 

 0.0005    

trep / 

Rrep 

The maximum standard errors of the average readings of 

the SPRT and PRT were 0.002 C (0.0002 ) and 

0.001  respectively. 

 

 0.002 C [2] / 

 0.001  

timm / 

Rimm 

The immersion depth during the calibration was 300 mm. 

Both the SPRT and PRT were sufficiently immersed into 

the circulating baths such that the heat leakage from or to 

the sensing element was negligible. 

An uncertainty limit of 0.001 C was estimated for the 

SPRT and 0.001  for the PRT. 

 

 0.001 C/ 

 0.001  

theat The SPRT was calibrated at 1 mA measuring current. No 

correction was applied to the SPRT due to the self-heating 

effects contributed by the 1 mA measuring current at the 

time of usage. An uncertainty limit of 0.001 C was 

estimated. 

 0.001 C  
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Symbol Information Uncertainty  

value 

tdrift No correction was made for the SPRT drift since the last 

calibration. The uncertainty limit of this correction was 

0.002 C based on the previous calibrations. 

 

 0.002 C 

tbath No correction was applied for the bath non uniformity 

inside the calibration baths. The uncertainty limit of this 

correction value was found to be within 0.005 C. 

 

 0.005 C 

Rhys No correction was applied for the hysteresis effect. The 

uncertainty of the hysteresis correction was estimated to 

be the change in the PRT resistance at 0.0 C, which was 

0.002 . 

 

 0.002  

 

Remarks  

[1] The calibration certificates of the indicators results showed that the errors of the 

indicators and calibration uncertainties were within the specifications of the indicators. 

No correction was applied to the indicator resistance readings. Drift and other influences 

such as environmental effects were considered negligible, therefore only the 

specifications of the indicators were included.  

 
[2] The SPRT and PRT readings were taken simultaneously in order to minimise the error 

caused by the temporal fluctuations of the bath. After the bath had stabilised, thirty SPRT 

and PRT readings at a nine seconds interval were observed. 

 

5.0 UNCERTAINTY BUDGET TABLE 

 

 Uncertainty budget table for the test temperature (tx) was tabulated below. 

 

Source 

of Uncertainty 

Symbol 

 

xi 

Type Uncertainty 

Value 

Probability 

Distribution 

Coverage 

Factor 

Standard 

uncertainty 

u(xi) 

 Sensitivity 

Coefficient 

ci 

cix u(xi)  

 

(C) 

Degrees 

of freedom 

 

SPRT tSPRT B 0.004 C Normal 2 0.0020 1 0.0020  

SPRT indicator 

specifications 

rind B 0.0002  Rectangular 1.732 0.00012 10 0.0012  

SPRT indicator 

resolution 

rres B 0.00005  Rectangular 1.732 0.000029 10 0.00029  

SPRT 

repeatability 

trep A 0.002 C - - 0.0020 1 0.0020 29 

SPRT 

immersion 

timm B 0.001 C Rectangular 1.732 0.00058 1 0.00058  

SPRT 

self-heating 

theat B 0.001 C Rectangular 1.732 0.00058 1 0.00058  

SPRT drift tdrift B 0.002 C Rectangular 1.732 0.0012 1 0.0012  

Bath non- 

uniformity 

tbath B 0.005 C Rectangular 1.732 0.0029 1 0.0029  
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Uncertainty budget table for the PRT resistance (Rx) at test temperature (tx) was tabulated below. 

 

Source 

of Uncertainty 

Symbol 

 

xi 

Type Uncertainty 

Value 

Probability 

Distribution 

Coverage 

factor 

Standard 

uncertainty 

u(xi) 

 Sensitivity 

Coefficient 

ci 

cix u(xi)  

 

() 

Degrees 

of freedom 

 

Test 

temperature 

tx B 0.0045 C Normal 1 0.0045 0.4 0.0018 700 

PRT indicator 

specifications 

Rind B 0.008  Rectangular 1.732 0.0046 1 0.0046  

PRT indicator 

resolution 

Rres B 0.0005  Rectangular 1.732 0.00029 1 0.00029  

PRT 

repeatability 

Rrep A 0.001  - - 0.0010 1 0.0010 29 

PRT 

immersion 

Rimm B 0.001  Rectangular 1.732 0.00058 1 0.00058  

PRT 

hysteresis 

Rhys B 0.002  Rectangular 1.732 0.0012 1 0.0012  

 

 

6.0 COMBINED STANDARD UNCERTAINTY 

 

 The combined standard uncertainty uc(tx) of the test temperature (tx) was given below. 

 

 

 The combined standard uncertainty uc(Rx) of the PRT resistance was given below. 

 

7.0 EFFECTIVE DEGREES OF FREEDOM 

 

 Effective degrees of freedom of the combined standard uncertainty uc(tx) was : 

 

 Effective degrees of freedom of the combined standard uncertainty uc(Rx) was : 
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8.0 EXPANDED UNCERTAINTY 

 

 The effective degrees of freedom for the combined standard uncertainty uc(Rx) was taken to 

be infinity. At a level of confidence of approximately 95 %, a coverage factor k of 2 was 

used. The expanded uncertainty, 

 







011.0

0053.0x2

)( xc RukU

 

     

 

9.0 REPORTING OF RESULTS 

 

Test temperature 

[tx : C] 

PRT resistance 

[Rx : ] 

0.000 100.020 

50.131 119.498 

99.763 138.489 

189.869 172.232 

229.996 186.955 

315.008 217.539 

419.573 254.023 

  

The expanded uncertainty of the PRT resistance given at the test temperatures was  

0.011 , estimated at a level of confidence of approximately 95 % with a coverage factor 

of k = 2.  

 

Remark : 

 

The following cubic equation was used to interpolate the PRT resistance from 0 C to 420 

C, where W(t) = R(t) / R(0 C). The coefficients a, b and c were determined by fitting 

the calibration results using the method of least squares. 
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a = 3.914069 x 10-1, b = -5.918921 x 10-3 , c = 2.281030 x 10-5 
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1.0 INTRODUCTION 

 

A current of 10A is measured by using a current shunt and a voltmeter. The specifications 

of the instruments used are as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Measurement set-up 

 

 

1.1 Current Shunt Specifications 

 • Current : 10 A 

  • Resistance : 0.01  

• The current shunt was calibrated recently.  From the calibration report, we have the            

  following: 

  Resistance R=0.010088  measured at 10 A, 23 °C 

             Relative expanded uncertainty : ±0.08 % at coverage factor k = 2 

  Temperature coefficient in the range 15 °C to 30 °C: 60 ppm / K 

The relative expanded uncertainties can be converted into expanded uncertainty by 

multiplying by R.  

 • The uncertainty due to drift of resistance value was found negligible. 

 

1.2  Voltmeter Specifications 

   • All uncertainty1 specifications apply for one year after calibration when operated in a 

temperature of 15 °C to 40 °C and a relative humidity of up to 80 %. 

 • DC voltage function specification 

 

Range Full scale Uncertainty1 

± ( % of reading + number of counts) 

200 mV 199.99 mV 0.030 +  2 

        

  Note : 1  Traditionally the term accuracy is used 

 

 

 

 

 

Current Shunt    

Load 

   

 

 
DC 

Source 

Voltmeter 
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1.3 Measurement Record 

 

 Room temperature : (23 ± 5) °C , Humidity : (55  ± 10) % R.H. 

 

Reading no. Voltage (mV) 

1 100.68 

2 100.83 

3 100.79 

4 100.64 

5 100.63 

6 100.94 

7 100.60 

8 100.68 

9 100.76 

10 100.65 

 

 

2.0 MATHEMATICAL MODEL 

 

 The current is a function of the voltage and resistance. From Ohm's law,  

 

)1...(

),(

),( 21

R

V

RVf

xxfI







 

  

 

 where I is the current, V is the voltage, and R is the resistance. 

 The best estimate of the voltage V is the mean voltage V  of a series of voltage measurement. 

 

 

3.0 UNCERTAINTY EQUATION 

 

 For uncorrelated input quantities, the combined standard uncertainty )(luc  of the current 

measured is : 

 )2...()()( 2

2
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 Major sources of uncertainties in the measurement include: 

 

(1)       Uncertainties due to the measured voltage which consists of the random variability of 

the measured voltage and the voltmeter uncertainty. The effect of the room 

temperature on voltmeter has already been taken into account in the error limits. 

(2) Uncertainties due to the current shunt resistance which consist of the calibrated 

resistance value and the resistance change due to temperature effect.  The uncertainty 

due to drift of resistance value is negligible. 

 

            Let , 

 )(1 Vu : Standard uncertainty of voltage due to random effect. 

 )(2 Vu : Standard uncertainty of voltage due to voltmeter uncertainty. 

 )(3 Ru : Standard uncertainty of current shunt calibrated resistance value. 

 )(4 Ru : Standard uncertainty of current shunt resistance due to temperature effect. 

 

 

 Then, 
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 and the sensitivity coefficients are : 
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4.0 ANALYSIS OF UNCERTAINTY COMPONENTS 

 

4.1 Type A Evaluation 

 

4.1.1 Voltage 

The data are tabulated in Table 1 for the calculation of mean voltage and standard 

deviation of the voltage. 
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Table 1:  Data for calculation of mean and standard deviation of voltage 

No. )mV(iV    210x VVi
   42

10x VVi  

1 100.68 -4 16 

2 100.83 11 121 

3 100.79 7 49 

4 100.64 -8 64 

5 100.63 -9 81 

6 100.94 22 484 

7 100.60 -12 144 

8 100.68 -4 16 

9 100.76 4 16 

10 100.65 -7 49 

Total 1007.2 0 1040 

 

  

Mean voltage: 

   

)6...(mV72.100
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The best estimate of the voltage is therefore : 
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Standard deviation: 
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   Standard deviation of the mean: 

   

)9...(mV10x40.3

10

10x75.10

)(
)(

2

2-






n

Vs
Vs i

 

 

 

                       Standard uncertainty of voltage due to random effect is:  

  

   )10...(mV10x40.3)( 2

1

Vu  

   

                        Degrees of freedom : 

 

   

)11...(9

110

11
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4.2 Type B Evaluation 

 

4.2.1 Uncertainty of Voltmeter 

       From specification, the uncertainty of the voltmeter is: 

 

   

    

  Assumed rectangular distribution, the standard uncertainty of voltage due to voltmeter 

uncertainty is: 

 

 

 Degrees of freedom:  
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4.2.2 Current Shunt Resistance 

 

 From calibration report, the uncertainty of the shunt resistance is: 

       

 Given coverage factor k = 2, the standard uncertainty of current shunt resistance is: 

 

 

 Degrees of freedom:  

    

 

4.2.3 Temperature Effect on Current Shunt (23 ± 5 oC) 

 

 From the calibration report, the uncertainty of the shunt resistance due to the effect of room 

temperature  t = 5 °C is: 

  

 Assumed rectangular distribution, the standard uncertainty of resistance due to the 

temperature effect is: 

 

 Degrees of freedom:  
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5.0 CALCULATION OF CURRENT 

 

 

6.0 SENSITIVITY COEFFICIENTS 

 

     

 

 7.0 UNCERTAINTY BUDGET 

 

Source of 

Uncertainty 

Symbol 

xI 

Type Uncertain

ty Value 

Probability 

Distribution 

Coverage 

Factor 

Standard 

Uncertainty 

u(xi) 

Sensitivity 

Coefficient 

ci 

ci x u(xi) 

(A) 

Degrees 

of 

Freedom 

 

Repeatability )(1 Vu  A 3.40x10-2  

mV 

- - 3.40x10-2 

mV 

99.128 1 3.37 x 10-3 9 

Voltmeter )(2 Vu  B 5.02x10-2  

mV 

Rectangular 3  2.90x10-2 

mV 

99.128 -1 2.87 x 10-3  

Shunt 

Resistance 

)(3 Ru  B 8.07x10-6  

 

Normal 2 4.04x10-6 

 

989.7 V/2 3.99 x 10-3  

Shunt 

Temperature 

Effect 

)(4 Ru  B 3.03x10-6  

 

Rectangular 3  1.75x10-6  989.7 V2 1.73 x 10-3  

 

 

8.0 COMBINED STANDARD UNCERTAINTY uc(y) 

 

 For uncorrelated input quantities: 
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 Then, 

 

 Hence, 

 

 

9.0 EFFECTIVE DEGREES OF FREEDOM eff  

 

 

 

10.0 EXPANDED UNCERTAINTY U 

 

 For effective degrees of freedom eff > 100, k = 2 can be used at approximately 95 % level of 

confidence. Therefore, the expanded uncertainty U  is :  

 

 

 

 11.0 REPORTING OF RESULTS 

 

  The measured result is 9.984 A.  The reported expanded uncertainty is  0.012 A with a coverage 

factor of k = 2, assuming a normal distribution at a level of confidence of approximately 95 %. 
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 12.0  REMARKS 

 12.1  Alternative method to calculate combined standard uncertainty uc by relative combined method 

   Since the mathematical model is of the form  

 

The combined standard uncertainty uc(y) can be expressed as an estimated relative combined 

variance: 

 

   Therefore, 

 

   Then, 

   And 

 

12.2  Alternative method to calculate effective degrees of freedom,  
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1.0 INTRODUCTION 

 

The manufacturer's calibration procedure of a multi-meter required that a DC voltage of 

10 V from a multifunction calibrator is applied to the multi-meter to verify its DC 20 V 

range accuracy. The specifications of the multifunction calibrator and digital multi-meter 

are as follows: 

 

 

    

 

      

 

 

 

 

 

 

1.1  Multifunction Calibrator Specifications 

 

 The calibrator is calibrated every 90 days. The last calibration was carried out at a 23 °C ± 

1 °C environment and the calibrator was verified to be within specifications. 

 

  DC Voltage Specifications 

 

Range 

 

Resolution 
Uncertainty at 99 % level of confidence 

± 5 °C from calibration temperature 

  24 Hours 90 Days 1 Year 

  ± (ppm output + V) 

20 V 1 V 4 + 3 5 + 4 8 + 5 

    

1.2  Digital Multimeter Specifications 

 

  DC Voltage range 

Range Full Scale 

Display 

Resolution 1 Year Uncertainty1  

± (% of reading + % of range) 

20 V 19.9999 V 100 V 0.0035 + 0.0025 

 

  Note : 1 Traditionally the term accuracy is used 

 

 It was given in the service manual that a DC voltage of 10 V is used to verify the 

multimeter's DC 20 V range. The verification specification for the multimeter DC 20 V 

range is:  

 

 

 

Calibrator 

Multimeter 

10.0001 V 

Figure 1 : Connection diagram 

10.000000 V 
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   Verification specification 

Range Input Voltage Limits 

20 V 10 V ± 0.0007 V 

 

1.3 Measurement Record 

 

 Temperature : 23 °C ± 2 °C 

 Only one reading was taken as the indicated voltage remain unchanged. Errors due to 

loading effect and connection are negligible. 

 

Applied Voltage  Indicated Voltage 

10.000000 V 10.0001 V 

 

 

2.0 MATHEMATICAL MODEL 

 

 The multimeter was connected directly to the calibrator. The model of the process is a 

function of voltages : 

   

 

  where, 

 
DMMV  : Multimeter indicated voltage. 

 STDV    : Applied voltage from the calibrator. 

 
DMMV   : Error of the multimeter. 

 

 

3.0  UNCERTAINTY EQUATION 

 

 The input quantities are uncorrelated. The combined standard uncertainty )(Vuc is : 

 

 The voltage from the calibrator is directly applied to the multimeter. Since errors due to 

loading effect and connection were found negligible, the components of the total 

measurement uncertainty consist of : 

 

 )(1 Vu : Calibrator's applied voltage uncertainty. 

 )(2 Vu : Multimeter's random effect uncertainty. 
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 The combined standard uncertainty becomes : 

 

 The sensitivity coefficients are : 

 

 The combined standard uncertainty becomes : 

 

 

4.1 TYPE A EVALUATION 

 

 This is a case where the reference standard's accuracy is much better than the device under 

test's. The multimeter's reading may remain unchanged, or sometimes the multimeter has a 

± 1 count flickering due to the multimeter's digitizing process. In this case, the Type A 

evaluation of standard uncertainty can be assumed negligible and the repeatability 

uncertainty can be treated as Type B uncertainty using the resolution error of the 

multimeter. 

 

4.2 TYPE B EVALUATION 

 

4.2.1 Calibrator 

 

 From the calibrator's specification, the uncertainty of the applied voltage is :  

 

Given level of confidence is 99 %. Assume normal distribution, coverage factor k = 2.58, the 

standard uncertainty of applied voltage is :  

)3...()()()()(

)()()(

2

2

2

2

2

1

2

1

2

2

2

2

1

2

2

VucVuc

Vu
V

V
Vu

V

V
Vu

DMM

DMM

STD

DMM
c






























1

)4...(1








STD

DMM

V

V
c

1

)5...(2








DMM

DMM

V

V
c

)6...()()()(

)()()(

2

2

2

1

2

2

2

1

2

VuVuVu

VuVuVu

c

c





V10x54

V10x4V10x10x5

)7...(μV4outputofppm5

6

66

1









a



 

EXAMPLE 5 : CALIBRATION OF DC 20 V RANGE OF A  MULTIMETER 

Technical Guide 1, March 2001 Page 56 of 113 

 

  

 Degrees of freedom : 1   

 

4.2.2 Multimeter  

 

 From multimeter's specifications, the 20 V range resolution is 100 V (i.e. 1 count). Since 

the reading was unchanged, assumed the limit is half a count. 

 

  Assumed rectangular distribution, the standard uncertainty due to the resolution uncertainty 

of the multimeter is : 

 

  Degrees of freedom : 2  

 

 

5.0 UNCERTAINTY BUDGET 

 

Sources of 

Uncertaint

y 

Symbo

l 

ui 

Type Uncertaint

y Value 

Probability 

Distribution 

Coverage 

Factor 

k 

Standard 

Uncertaint

y u(xi) 

(V) 

Sensitivity 

Coefficien

t ci 

ci x u(xi) 

(V) 

Degrees 

of 

Freedo

m 

 

Calibrator u1(V) B 54x10-6 V Normal 2.58 20.9x10-6 1 20.9x10-6  

Resolution u2(V) B  50x10-6 V Rectangular 3  28.9x10-6 1 28.9x10-6  
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6.0 COMBINED STANDARD UNCERTAINTY uc(y) 

 

  The combined standard uncertainty of the indicated voltage at the multimeter is : 

 

 

 

7.0 EFFECTIVE DEGREES OF FREEDOM eff  

 

  Since 
1  and 

2  are infinite, effective degrees of freedom eff  

 

 

8.0 EXPANDED UNCERTAINTY, U   

   

  For effective degrees of freedom eff , k = 2 is used at approximately 95 % level of 

confidence. Therefore, the expanded uncertainty is  

    

9.0 REPORTING OF RESULTS 

 

)14...(710001.10 VVVDMM    

   

 The measured result is 10.0001 V.  The reported expanded uncertainty is  71 V with a 

coverage factor of k = 2, assuming a normal distribution at a level of confidence of 

approximately 95 %. 

   

V10x7.35

10x9.2810x9.20

)11...()()()(

6

2626

2

2

2

1









 VuVuVuc

μV71

10x7.35x2

)13...()(

6









VukU c

   

 
   


















4646

46

2

4

22

1

4

11

4

10x9.28x110x9.20x1

10x57.3

)12...(
)()(

)(




VucVuc

Vuc

eff



 

 

EXAMPLE 6 : HARMONIC MEASUREMENT 

Technical Guide 1, March 2001 Page 58 of 113 

 

 

1.0 INTRODUCTION 

 

 The measurement configuration is shown in Figure 1. An attenuator is used to improve the 

mismatch uncertainty.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Measurement set-up 

 

 

The following information is derived from the instrument's specification sheet. 

 

  Signal Generator (UUT) SWR  = 2.0 

  Spectrum Analyzer SWR  = 1.9 

  Spectrum analyzer instrument error  = 1.72dB 

  Attenuation    = 10dB 

  Attenuator flatness   = 1.2 dB 

  Cable flatness    = 0.5 dB 

 

 

 The harmonic measurement data obtained from the spectrum analyzer are shown in Table 1. 

 

  Table 1 

No. of 

Readings 

Data 

1 40.02 

2 40.08 

3 39.96 

4 40.04 

5 39.90 

 

 The mean of 5 harmonic measurements is 40 dBc.  

Spectrum Analyzer  

AnAnAnalyzer  

AnAnalyzer 

Input 

EXT 10 MHz 
MHz 

Signal 

Generator 
Output 

Attenuator 
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1.1 The Measurand 

 

 The measurand, Harmonic  is the power difference between the CW carrier and a signal at 

a specified offset from the carrier. The offset is a multiple of the carrier frequency. 

  

 

2.0 MEASUREMENT EQUATION  

 

 The measurement equation is: 

 

   

 where, 

 powerOffset _  :  measured level of the harmonic signal (mV). 

 powerCarrier _  :  measured level of the carrier Level (mW). 

 
AAtt   : path loss between the signal generator output  and the spectrum 

analyzer input while measuring the harmonic signal, including 

mismatch. 

 
BAtt    : path loss between the signal generator output  and the spectrum 

analyzer input while measuring the carrier (reference) signal, 

including mismatch. 

 flatnessE    : variation in path loss of the cables, attenuator and adapters (not 

including SWR) when measuring the harmonic and reference signal 

as a fraction. 

errorSA  : error introduced by the spectrum analyzer as a fraction. 

 

 

3.0 DERIVATION OF SENSITIVITY COEFFICIENT  
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1c and 
2c do not need to be computed as the powerCarrier _  and powerOffset _ are 

simply the digital readings from the spectrum analyzer. The digital readings have no 

uncertainty associated with them. Instrumentation errors are contained in errorSA . 

 

   

 Note : The above is obtained by assuming 
AAtt equal to 

BAtt . The second and third 

terms of the equation are negligible comparing to the first term and can be ignored. 

 

  

 Similarly, 

  

  

4.0 UNCERTAINTY EQUATION 

 

 The uncertainty equation is : 

 

  

 

where )(xu is the uncertainty of variable x .  
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5.0 TYPE A UNCERTAINTY 

 

 Five readings were taken for the harmonic measurement. They are 40.02 dBc, 40.08 dBc, 

39.96 dBc, 40.04 dBc and 39.90 dBc. 

 

 The mean is 

 

 The variance is   

 

 

 The standard uncertainty,    

 

 

 

6.0 TYPE B UNCERTAINTY DERIVATION 

 

6.1  )( AAttu and )( BAttu Derivation  

 

 The network consisting of the UUT, attenuator and spectrum analyzer can be represented 

in a signal flowgraph as below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6.1:   Signal flow-graph representation of the measurement network 
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uT and sT  are the reflection coefficient of the signal generator and spectrum analyzer 

respectively. 

 

 Using Mason's rule, the ratio 
1

2

a

a
 can be expressed: 

 
       

 This formula determines the attenuation between 
1a  and 

2a  . The minimum and 

maximum attenuation is given by: 

 

 

 

 The above assumed no phase information and constitute the worst case attenuation. 

  

 For a coaxial attenuator,  

 

 

This modifies the minimum and maximum attenuation equations to become: 
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The maximum and minimum attenuation equations are linear and  include uncertainty 

caused by mismatch.  The attenuation  maxAtt , 
minAtt  and 

21s are squared to convert the 

attenuation into power form.  The power attenuation uncertainty is given by: 

 

 

Hence, for a unit under test SWR of 2.0 : 1, spectrum analyzer's SWR of 1.9 : 1 and 

attenuator's SWR ( s11 and s22 ) of 1.015 : 1, the uncertainty is computed as : 
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This corresponds to a 10 x log (1.031) = 0.13 dB uncertainty due to mismatch. To convert 

this uncertainty into the standard derivation form, this value has to be divided by a factor 

of 2. This gives a standard uncertainty of : 

      
6.2 )( flatnessEu Derivation 

 The uncertainty is contributed by the cable and attenuation flatness. The worst case will 

be the sum of the two terms. To obtain the standard uncertainty, a normalise factor of  

3

1
is used. The uncertainty is: 

 

6.3  )( errorSAu Derivation 

 The spectrum analyzer uncertainty is given as 1.72dB. The standard uncertainty will be 

1.72dB multiple by a normalise factor of 
3

1
. 

 

 

6.4 Overall Type B uncertainty 

  

The measured harmonic is 40dBc. In linear form , this is equal to  
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Convert to dB, we have the uncertainty as: 

 

 

 

7.0 UNCERTAINTY BUDGET TABLE 

 

Sources of 

Uncertainty 

Symbol 

xi 

Type Uncertainty 

Value 

Probability 

Distribution 

Coverage 

Factor 

Standard 

Uncertainty 

u(xi) 

Sensitivity 

Coefficient 

ci 

ci x u(xi) Degrees 

of 

freedom 

Attenuator A 

(include 

mismatch) 

)( AAttu  B 0.031 U-shape 2  0.02192 10 -5 0.02x10 -5  

Attenuator B 

(include 

mismatch) 

)( BAttu  B 0.031 U-shape 2  0.02192 10 -5 0.02x10 -5  

Spectrum 

Analyzer 
)( ErrorSAu  B 0.4859 Rectangular 3  0.2805 10 -4 2.8x10 -5  

Path 

Variation 
)( flatnessEu  B 0.4791 Rectangular 3  0.2766 10 -4 2.76x10 -5  

Repeatability )(HaruA  A - - - 0.0316 dB 1  4 

 

  

8.0  COMBINED STANDARD UNCERTAINTY  

 

 The combined uncertainty,   

 

9.0 EFFECTIVE DEGREES OF FREEDOM eff  

 

 The effective degrees of freedom will be 
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10.0 EXPANDED UNCERTAINTY 
  

For an effective degrees of freedom eff , k = 2 is used at approximately 95 % level 

of confidence. Hence, the expanded uncertainty  

 

 

11.0 REPORTING OF RESULT 

 

 The measured harmonic is 40 dBc.  The expanded uncertainty of the measurement is ± 

2.884 dB at a confidence level of approximately 95 % with a coverage factor of k = 2. 
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1.0    INTRODUCTION 

 

The power reference oscillator output is factory adjusted to 1 mW   0.7 %. To achieve this 

accuracy,  a special measurement system accurate to 0.5 % and allows for a transfer error of 

  0.2 % in making the adjustment is used. The power reference oscillator can be adjusted to 

  0.7 % with the same equipment setup in the calibration laboratory. In order to ensure the 

maximum accuracy in verifying the power reference oscillator output, the manufacturer's 

performance test procedures must be followed.   

 

 
Figure 1: Measurement set-up 

 

1.1    Equipment Used: 

Power Meter 

Thermistor Mount 

Multimeter 

 

1.2    Specifications: 

Internal 50 MHz oscillator factory set to 1 mW   0.7 %. 

Accuracy :   1.2 % worst case for one year (0 °C  to 55 °C). 

 

 

2.0     MEASUREMENT UNCERTAINTY ANALYSIS: 

 

To calculate the power reference oscillator output level (P) : 

 

 

where, 

RFp  : Power reference oscillator output level 

compV  : Previously recorded value (Typical value : 4.980529 V) 

1V   : Previously recorded value  (Typical value : 81.07153 mV) 

0V   : Previously recorded value (Typical value : 0.024 mV) 

R  : Previously recorded value (Typical value : 200.48 ) 

 

CALIBRATION FACTOR = Value for thermistor mount at 50 MHz. 

(Typical value : 0.9992) 

 

)_(4

)(2 2

1

2

001

FACTORNCALIBRATIOR

VVVVV
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RF
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Power Meter 

Multimeter 

Thermistor Mount 
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The thermistor mount when connected to the Power reference output of the Power Meter 

produces compV  and 
RFV  ( 0V  and 

1V ). A multimeter is used to measure the voltages compV and 

RFV  ( 0V and 
1V ).  

 

 

2.1  Type A Uncertainty Evaluation, )( RFA Pu  

 

In this test the power reference is obtained indirectly using the formula above. Therefore the 

measurements made from the multimeter is used to evaluate the uncertainty.  

 

The following steps are taken to ensure accurate measurement : 

 

1) The voltage measuring terminals are at the power meter; therefore it is located in an area 

of free moving air where it is not affected by local heat source. 

 

2) The power meter is then stabilized at its operating temperature. 

 

3) The multimeter is properly set up according to the operating manual to achieve optimum 

conditions and it is stabilized at its operating temperature. 

 

4) The voltage values are measured, taking five measurements with a complete breakdown 

between them. 

 

Table of readings  

 

measurement (
q ) 

R  
 

compV  
0V  1V  

RFP  

(calculated) 

1 200.27   5.15 V 71.67 V 78.35 mV 
1RFP  

2 200.28   5.15 V 93.60 V  78.37 mV 
2RFP  

3 200.27   5.14 V 75.67 V  78.28 mV 
3RFP  

4 200.27   5.15 V 83.25 V  78.34 mV 
4RFP  

5 200.27   5.16 V 79.67 V  78.35 mV 
5RFP  
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2.2  Type B Uncertainty Evaluation, )( RFB Pu  

  

2.2.1 Power Meter Accuracy 

 

   1 % of full scale on all ranges (+ 0 °C to 55 °C)  

 

 

2.2.2 Thermistor Mount 

 

From calibration report: 

12 months calibration cycle 

Frequency : 50 MHz 

Serial No : 84226 

Calibration Factor = 99.92 %    0.34 % 

The   0.34 % is the uncertainty value dCF of the calibration factor CF 

Effective Calibration Factor uncertainty : 0.9992 x 0.0034 = 0.0034 

dCF = 0.0034 

 

Taking Rectangular distribution: 

 

 

From measurement : 

 

Thermistor Mount internal bridge resistance : 200   

The resistance is measured from the multimeter, range of 1 k . 

 

This is the measurement uncertainty of the multimeter in the range 1 kW when measuring 

resistance where we consider a worst case of the measurement being done on the 90th day 

after calibration date to include a worst case (calibration  interval 90 days)                   
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2.2.3   Multimeter 

 

Accuracy : ppm of Reading + ppm of Range 

  

Range 1 Year 

100 mV 9 + 3 

1 V 8 + 0.3 

10 V 8 + 0.05 

100 V 10 + 0.3 

1000 V 10 + 0.1 

Multimeter Specification 

 

Voltage Reading Range Uncertainty 

0V  0.024 mV 100 mV 0.3 V  

1V  81.07 mV 100 mV 1.03 V  

compV  4.98 V 10 V 0.041 mV 

 

 

Symbol Uncertainty Standard 

Uncertainty 

)( 01 Vu  0.3 V  173.2 nV 

)( 12 Vu  1.03 V  0.59 V 

)(3 compVu  0.041 mV 0.024 mV 

 

 

Taking 95 % confidence interval with coverage factor k = 2.  

Assuming rectangular distribution. 

 

 

2.2.4 Power Reference Output Power Uncertainty Due To Mismatch Uncertainty of power 

meter and thermistor mount Reflection Coefficient 
 

Power Reference Output SWR 

 

SWR : 1.05 

 

Reflection Coefficient : 1

1





SWR

SWR

 

   = 0.0244  (From specifications) 
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Thermistor Mount  

 

Worst case reflection coefficient is 0.007 (Sum of mismatch and mismatch error = 0.001 + 

0.006) 

Mismatch thermistor mount to Power Reference Output in log scale: 

 

20 Log( 1 + 0.0244 x 0.007 ) = 0.001483 

20 Log( 1 - 0.0244 x 0.007 ) = -0.001483 

 

Power Uncertainty due to mismatch = 1 mW - ( 10 10

0014.0

 x 1 mW ) 

 = 3.414 x 10-7 W 

 

 

 

Assuming U-Shaped distribution 

Assuming Sensitivity Coefficient equal to 1. c6= 1. 

 

 

3.0 MEASUREMENT UNCERTAINTY BUDGET 

 

Formula given : 

    
)_(4

)(2 2

1

2

1

FACTORNCALIBRATIOR

VVVVV
P

oocomp

RF


  

 

 

From the formula, the power reference level is dependent on a few variables. They are 0V , 

1V , compV , R  and Calibration Factor. We have to analyze the effect of each variable to the 

measured power reference level. 

 

The best way to analyze the effect of each variable deviation on power reference level is to 

perform partial differentiation. Differentiate 
RFP  with respect to one variable at a time, then 

Root-Sum-Square all uncertainties to calculate the combined standard uncertainty. 
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4.0 SENSITIVITY COEFFICIENTS 

 

 

 

 

 

 

 

(CF abbreviation for CALIBRATION_FACTOR) 
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Let c1=
o

RF

V

P




, c2 =

1V

PRF




, c3 =

comp

RF

V

P




, c4 =

R

PRF




, c5 =

CF

PRF




, c6 = 1    

 

Where c1, c2, c3, c4, c5 and c6 are Sensitivity Coefficients 

 

 

5.0    UNCERTAINTY BUDGET TABLE 

 

Source of 

Uncertainty 

Symbol 

 

Xi 

Type 

 

Uncertainty 

value 

Probability 

distribution 

Coverag

e factor 

Standard 

uncertainty 

u(xi) 

Sensitivity 

coefficient 

ci 

| ci | x u(xi ) 

 

(W) 

Degrees 

of 

freedom 

v 

Vo of power 

meter  
)(1 Vu  B 0.3 V Rectangular 3  173.2x10-9 -12.55x10-3 2 x 10-9   

V1 of power 

meter  
)(2 Vu  B 1.03 V Rectangular 3  0.59x10-6  12.26x10-3 7 x 10-9   

Vcomp of 

power meter  
)(3 Vu  B 0.041 mV Rectangular 3  0.024x10-3  202.78x10-6 4 x 10-9   

Thermistor 

Mount 

Internal 

bridge 

Resistance 

)(4 Ru  B  - 

 

Rectangular 3  8.1 x 10-3 -5.01x10-6 40 x 10-9   

Thermistor 

Mount  

Calibration 

Factor 

)(5 CFu

 

B 0.0034  Rectangular 3  0.002  -1.00x10-3 0.000002    

Power  

Mismatch 
)(6 Wu  B 3.41x10-7 

Watts 

U -shaped 2  2.41x 10-9 1 2.41x 10-9   

 

 

6.0 COMBINED STANDARD UNCERTAINTY 

 

 

Type A uncertainty is negligible and hence ignored. 

 

 

)()( 111 Vuxu  = Standard Uncertainty of voltage 0V . 

)()( 222 Vuxu  = Standard Uncertainty of voltage 
1V . 

)()( 333 Vuxu  = Standard Uncertainty of voltage compV . 

)()( 444 Ruxu  = Standard Uncertainty of Thermistor Mount internal bridge resistance. 

)()( 555 CFuxu  = Standard Uncertainty of Thermistor Mount Calibration Factor. 

)()( 666 Wuxu  = Standard Power Uncertainty due to mismatch.  
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Therefore, 

 

 

7.0 EFFECTIVE DEGREES OF FREEDOM eff  

 

The effective degrees of freedom, 

 

 

 

8.0 EXPANDED UNCERTAINTY  

 

For an effective degrees of freedom eff , k = 2 is used at approximately 95 % level of 

confidence. Therefore, the expanded uncertainty 

 

 

 

9.0 REPORTING OF RESULT 

 

The power reference of the power meter is specified as 1 mW. The expanded uncertainty of 

measurement is  4 W at a confidence level of approximately 95 % with a coverage factor 

of  k = 2. 
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1. INTRODUCTION 

 

The transition time is normally measured at 10% to 90% of amplitude. To achieve this 

measurement on a digital oscilloscope, a programmable 500 MHz Pulse Generator whereby 

all output signals have a fixed transition time ≤ 200 ps is used. The Pulse Generator then 

applies a fast rise time pulse to the Digitizing Oscilloscope and makes an automatic rise-

time measurement. 

 

 
 

1.1 Equipment Used: 

 500 MHz Pulse Generator  

 

1.2 Specifications:  

The Digitizing Oscilloscope has a repetitive transition time that is ≤ 700 ps 

 

 

2.0   MEASUREMENT UNCERTAINTY ANALYSIS 

 

 To calculate the Rise-Time of the signal observed in the scope:  

         where, 

 RTObserved  : Rise-time of signal observed on oscilloscope 

   RTScope      : Rise-time of the oscilloscope itself 

 RTGen         : Rise-time of the Pulse of the Pulse Generator  

 

 Since we are to determine the Rise-time of the Digitizing Oscilloscope, we shall rearrange 

the equation. Therefore the Measurement Equation we are using for Rise-time of the Scope 

    is :  

 

  

22

GenScopeObserved RTRTRT 

22

GenObservedScope RTRTRT 
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There is a reminder to take note of is that the rise-time of the oscilloscope is not to be                   

more than 5 times as fast as the signal rise-time as the displayed rise-time will become    

       slower than actual. 

 

 

2.1   Type A Uncertainty Evaluation  uA (RTScope) 

 

         In this test the Rise-time of the oscilloscope is obtained indirectly using the formula   

         above; therefore the measurements made from the oscilloscope are used to evaluate the  

         uncertainty. 

 

         The following steps are taken to ensure accurate measurement :  

  

1. The Oscilloscope and Pulse Generator are to be located in an area of free moving air 

where they are not affected by local heat source. 

 

2. The pulse generator is stabilized at its operating temperature of 0 °C  to +55 °C  with a 30 

minutes warm up phase with a 50 ohms load resistance at all outputs. 

 

3. The oscilloscope is properly set up according to the operating manual to achieve 

optimum conditions and it is stabilized at its operating temperature +15oC to +55 °C  

with a 30 minutes Power On warm up. 

 

4. The rise-time values are measured and taking five measurements with a complete 

breakdown between them. 

 

Table of readings 

Measurement 

(i) 

RTObserved RTGen RTScope 

(Calculated) 

RTsi 

1 540 ps 200 ps 501.60 ps RTs1 

2 539 ps 200 ps 500.52 ps RTs2 

3 540 ps 200 ps 501.60 ps RTs3 

4 540 ps 200 ps 501.60 ps RTs4 

5 539 ps 200 ps 500.52 ps RTs5 
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            Experimental standard deviation,  

             Experimental SD of the mean,  

 

                                                                          

2.2         Type B Uncertainty Evaluation uB (RTScope) 

 

2.2.1      Pulse Generator Transition Time Specification 

              10% to 90% amplitude : ≤ 200 ps, 300 mV to 3V Range 

              Standard Uncertainty of Pulse Generator,   

              

  (The probability distribution of the rise-time specification is not exactly known. Hence, 

rectangular distribution is adopted as given in GUM) 

 

2.2.2     The Rise-time of the observed Signal 

        

             The reading observed is 539 ps and the uncertainty present here is only the resolution    

             of the displayed reading of the Rise-time value and it is considered negligible. 

 

 

3.0        MEASUREMENT UNCERTAINTY BUDGET 

 

             Formula given :  

                                                  

 From the formula, the Rise-time of scope is now dependent only on the standard 

uncertainty of the Pulse Generator. 
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 The best way to analyze the effect of the variable deviation on the Rise-time is to            

perform partial differentiation. Differentiate RTScope with respect to RTGen, then Root-

Sum-Square the uncertainty to calculate the combined standard uncertainty. 

 

           Therefore,  

 

                                         

 

4.0 SENSITIVITY COEFFICIENTS 

 

 Taking partial derivatives of the equation, the sensitivity coefficients 

                          

         Substituting  RTObserved = 539 ps and RTGen = 200 ps 

                                                                                                   

5.0  UNCERTAINTY BUDGET TABLE 

 
Source of 

Uncertainty 

Symbol 

xi 

Typ

e 

Uncertaint

y Value 

Probability 

distribution 

Coverage 

factor 

Standard 

Uncertainty 

u(xi) 

Sensitivity 

coefficient 

ci 

|ci|xu(xi) Degree

s of 

freedo

m 

Rise-time 

of pulse 

generator 

UGen (t) B 200 ps Rectangular 3  115.47 ps -0.40 ps 46.19 ∞ 

Rise time of 

oscilloscope 

uB 

(RTScope) 
B - 

t-

distribution 
-  46.19 ps   ∞ 
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6.0 COMBINED STANDARD UNCERTAINTY 

 

                            

 The Type A uncertainty is negligible and hence ignored  

 Hence,  

                                                                                       

7.0 EFFECTIVE DEGREES OF FREEDOM eff  

  

                The effective degrees of freedom 

 

8.0 EXPANDED UNCERTAINTY 

 

                For an effective degrees of freedom, eff = ∞, k = 2 is used at approximately 95%    

                 level of confidence. Therefore, the expanded uncertainty 

 

 9.0     REPORTING OF RESULT  

 

 The rise-time of the digital oscilloscope is specified as ≤ 700 ps. The uncertainty of  

                 measurement is ± 92.38 ps at a confidence level of approximately 95% with a  

                 coverage factor  k = 2 
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1.0 INTRODUCTION 

 

The increasing and decreasing gauge pressure indications of the Industrial Pressure 

Gauge are calibrated by comparing against a Pressure Test Gauge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 1: Set-up of an industrial pressure gauge calibration 

 

  

 The unit-under-test (UUT) is an Industrial Pressure Gauge with: 

 

  Range : 0 - 100 psi 

  Scale: 1 div  = 1 psi 

  Resolution: ½ div = 0.5 psi 

  Accuracy class: 1 

 

 It is calibrated against a Pressure Test Gauge with: 

 

  Range : 0 - 100 psi 

  Scale: 1 div  = 0.2 psi 

  Resolution: ½ div = 0.1 psi 

  Uncertainty: ± 0.25% span 
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2.0 UUT MEASURED DATA 

 

 The number of readings for each test point, n = 5, are tabulated as below: 

 

Table 1 - Increasing Gauge Pressure 

 

Nominal 

Pressure as 

from Test 

Gauge 

Readings of UUT 

(psi) 

Mean Standard 

Deviation 

(psi) 1 2 3 4 5 (psi) (psi) 

20 20.0 20.5 20.0 20.0 20.5  20.2 0.2739 

40 40.0 40.5 40.5 40.5 40.0  40.3 0.2739 

60 60.5 60.5 60.5 60.5 60.0  60.4 0.2236 

80 80.0 80.5 80.5 80.5 80.5  80.4 0.2236 

100 100.0 100.0 100.5 100.5 100.5  100.3 0.2739 

 

Table 2 - Decreasing Gauge Pressure 

 

Nominal 

Pressure as 

from Test 

Gauge 

Readings of UUT 

(psi) 

Mean Standard 

Deviation 

(psi) 1 2 3 4 5 (psi) (psi) 

80 80.0 80.5 80.0 80.0 80.0  80.1 0.2236 

60 59.5 59.5 59.5 59.5 60.0  59.6 0.2236 

40 40.5 40.0 40.0 40.5 40.5  40.3 0.2739 

20 20.0 20.0 20.0 20.5 20.0  20.2 0.2739 

 

3.0 MATHEMATICAL MODEL 

 

 Hence the mathematical relationship can be modelled as: 

 

 where 

 UUTY  : Industrial Pressure Gauge indication. 

 GaugeTestX  : Pressure Test Gauge indication. 

 RepE  : Error due to random variations of the Industrial Pressure Gauge indication when 

repeatedly applied of same Pressure Test Gauge indication. 

 ResE  : Error due to resolution of the Industrial Pressure Gauge indication. 

 

)1...(ResRepGaugeTestUUT EEXY 
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4.0 UNCERTAINTY EQUATION 

 

 Considering all the input quantities are uncorrelated, the combined standard uncertainty 

equation is then given by: 
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 where 

 )( GaugeTestXu : standard uncertainty for Pressure Test Gauge indication. 

 )( RepEu : standard uncertainty for random variations of Industrial Pressure Gauge   

indication . 

 )( ResEu : standard uncertainty for resolution of Industrial Pressure Gauge indication. 
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
,  are the partial derivatives of UUTY  with respect to 

GaugeTestX ,  

 

 ResRep EE ,  in equation (1).  These are the sensitivity coefficients and all are equal to 1. 

 

 

5.0 TYPE A STANDARD UNCERTAINTY 

 

 Maximum standard deviation from Tables 1 and 2 is, 

 

     

 Hence the Type A standard uncertainty is given by  

 

    

6.0 TYPE B STANDARD UNCERTAINTY 

 

6.1 The expanded uncertainty taken from the calibration report of the Pressure Test Gauge is  

0.25 % of span with the coverage factor of k = 2 at approximately 95 % level of confidence 

assuming normal distribution. 
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Hence the Type B standard uncertainty is given by  

   

 

6.2 The resolution of the Industrial Pressure Gauge indication is half of its divisional interval, 

which is 0.5 psi and assuming rectangular distribution, 

 

    

 

7.0 UNCERTAINTY BUDGET TABLE 

 

Source of 

Uncertainty 

Symbol 

xi 

Type Uncertaint

y value 

Probability 

distribution 

Coverage 

factor 

Standard 

uncertainty 

u(xi) 

Sensitivity 

coefficient 

ci 

cI x u(xi) 

   (psi) 

Degrees 

of 

freedom 

 

Pressure 

Test Gauge 

XTest Gauge B 0.25 psi Normal 2 0.125 psi 1 0.125  

Resolution 

of Industrial 

Pressure 

Gauge 

ERes B 0.5 psi Rectangular 12  0.144 psi 1 0.144  

Repeatabilit

y of 

Industrial 

Pressure 

Gauge 

ERep A 0.122 psi - - 0.122 psi 1 0.122 4 

 

 

 

8.0 COMBINED STANDARD UNCERTAINTY 

 

 The combined standard uncertainty is then given by 
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9.0 EFFECTIVE DEGREES OF FREEDOM OF COMBINED STANDARD 

UNCERTAINTY 

 

 The effective degrees of freedom of the combined standard uncertainty is given by: 

    

 

10.0 EXPANDED UNCERTAINTY 

 

 Since the effective degrees of freedom is greater than 30, k = 2 at a confidence level 

of approximately 95 % is used.  

 Therefore, the expanded uncertainty is given by 

 

    

11.0 REPORTING OF RESULTS 

 

 Generally, for the Industrial Pressure Gauge indication range of 0 to 100 psi, having 

an expanded uncertainty of  0.5 psi with a coverage factor of k = 2 assuming a 

normal distribution at a level of confidence of approximately 95 %. 
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1.0       INTRODUCTION 
 

 This example demonstrates how the uncertainty of a calibration point for torque tester is 

evaluated and computed. 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 : Set-up of torque tester calibration 

  

The torque tester is calibrated using a torque arm and dead weights as shown in Figure 1. 

The dead weights are placed at one end of the torque arm, which then produced a desired 

known torque. The torque arm is designed with a radial end which ensures that the 

perpendicular distance of the torque arm is maintained, even when it rotates upon loaded. 

 

 

2.0 MATHEMATICAL MODEL 

 

   

 Hence,      

 

 where 

 M   : weight of the dead weights applied at the end of the torque arm in kg. 

 a   : density of air in kg/m3. 

 m   : density of the dead weight material in kg/m3. 

 20d  : effective length of the torque arm in m at 20 oC as given in its calibration certificate. 
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    : coefficient of thermal expansion of the torque arm in oC-1. 

    : deviation of temperature from 20 oC reference temperature of the torque arm in oC. 

 g   : local gravity acceleration in m/s2. 

 e   : consists of resolution () and repeatability (T) of the torque tester being calibrated, all        

                        in N.m. 

 

 Assuming all the above quantities are uncorrelated, equation (3) can be re-written as, 

 

   

 

 Hence the contributory variances are as follows, 

 

 

 with sensitivity coefficients,  
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In this example, a calibration point at 12 Nm is chosen on a torque tester which 

measuring range is 0 to 12 Nm. 

 

3.0 TYPE B UNCERTAINTY EVALUATION 

 

 Calculated weight to be applied is 4.910 kg to produce the required known torque. The 

uncertainty computed using a coverage factor of k = 2 is 0.025 kg.  

 

 The standard uncertainty is then  

 

  

  

 The Density of dead weights, m  is given by the manufacturer to be 8000 kg/m 3 with a 

rectangular distribution with bounds ± 100 kg/m 3. The standard uncertainty is then  
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The local gravity acceleration, g is calibrated to be 9.78065 ± 0.00005 m/s 2 using a 

coverage factor of k = 2. The standard uncertainty is then  

  

 

 The length of torque arm, 20d  is calibrated to be 0.25000 ± 0.00002 m using a coverage 

factor of k = 2. The standard uncertainty is then 

 

 

 

 Coefficient of thermal expansion,  of the torque arm is given by the manufacturer to be 

1x10-7 m / °C. Since the value of  is very small, its standard uncertainty contribution to the 

combined uncertainty is neglected, hence 

 

    0)( u  

 

 

 The temperature of the environment is controlled and monitored to be 20 oC, hence  = 0. 

The uncertainty represented by a rectangular distribution with bounds ± 1 oC. The standard 

uncertainty is then 
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 Within the laboratory controlled ambient condition, the air density of 1.2 kg/m3 would have 

an uncertainty represented by a rectangular distribution with bounds  0.06 kg/m3. The 

standard uncertainty is then, 
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 Standard uncertainty of indication of torque tester display is, 
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 where  = resolution of torque tester display 
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4.0 TYPE A UNCERTAINTY EVALUATION 

 

 10 independent repeated observations were taken. The arithmetic mean of these readings is 

computed to be 11.85 Nm with a standard uncertainty of  
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 where n = number of independent repeated observations. 
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5.0 SENSITIVITY COEFFICIENTS 

 

 The sensitivity coefficients in equation (5) are computed as, 
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6.0 UNCERTAINTY BUDGET TABLE 

 

Source of 

Uncertainty  

Symb

ol xi 

Type Uncertainty 

value 

Probability 

distribution 

Coverag

e factor 

Standard 

uncertainty 

 u(xi)  

Sensitivity 

coefficient  

ci 

ci x u(xi) 

Nm 

Degree

s of 

freedo

m  

Weights 
M 

B 25 x 10-3 kg Normal 2 12.5 x 10-3 kg 2.445 3.06 x 10-2  

Density of 

weights 
m  B 100 kg/m3 Rectangula

r 
3  57.74 kg/m3 2.25 x 10-

7 

2.25 x 10-5  

Gravity 

acceleration 

g B 5 x 10-5 m/s2 Normal 2 2.5 x 10-5 m/s2 1.227 3.07 x 10-5  

Length of arm d20 B 2 x 10-5 m Normal 2 10 x 10-6 m 48.016 4.80 x 10-4  

Coefficient of 

Thermal 

Expansion 

 B - - - 0 0 0 - 

Temperature  B 1 °C Rectangula

r 
3  5.774 x 10-1 °C 1.2 x 10-6 6.92 x 10-7  

Air density 
a  B 6 x 10-2 kg/m3 Rectangula

r 
3  3.464 x 10-2 

kg/m3 

-2 x 10-3 -6.93 x 10-5  

Resolution  B 5 x 10-3 Nm Rectangula

r 
3  2.88 x 10-3 Nm 1 2.88 x 10-3  

Repeatability 
T 

A 1.58 x 10-2 

Nm 

- - 1.58 x 10-2 Nm 1 1.58 x 10-2 9 

 

 

7.0 COMBINED STANDARD UNCERTAINTY 

 

 Collection of the individual terms discussed previously and substitute them and equation (6) 

into equation (5) yields for the variance and the combined standard uncertainty, )( mc Tu . 
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8.0 EFFECTIVE DEGREES OF FREEDOM 

 

 Suppose that one is required to obtain an expanded uncertainty U = k )( mc Tu  that provides a 

level of confidence of approximately 95 %. The procedure is to first compute the effective 

degrees of freedom, )( meff T . 

 

 To obtain the effective degrees of freedom, i  the degrees of freedom for each standard 

uncertainty component is required. For a component obtained from Type A evaluation, i  is 

obtained from the number of independent repeated observations upon which the 

corresponding input estimate is based and the number of independent quantities determined 

from those observations.  

 

 For a  component obtained from a Type B evaluation, i  is obtained from the judged 

reliability of the value of that component, which is often the case in practise, i    , such 

that (M), )( m , )( , )( , )( a , )( , )( 20d  and )(g  are treated as  .  Hence, 

 

 

 

9.0 EXPANDED UNCERTAINTY 

 

 For )( meff T  = 216, k = 2 can be used at approximately 95 % level of confidence. 
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10.0 REPORTING OF RESULTS 

 

 The measured torque of 11.85 Nm having an expanded uncertainty of ± 0.07 Nm with a 

coverage factor of k = 2, assuming a normal distribution at a level of confidence of 

approximately 95 %. 
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1.0 INTRODUCTION 

 

An electronic weighing machine with a scale of range, 0 to 60 kg and resolutions of 0.01 kg 

was calibrated by direct comparison method, using a set of OIML class M2 standard weight. 

Prior to calibration, the weighing machine was adjusted at full load using a standard weight 

according to the manufacturer procedure. The repeatability of the weighing machine was 

determined at near zero, half-full load, full load and the pool standard deviation was 

obtained. Normally the scale reading of the weighing machine would be calibrated by 

placing standard weights on the receptor in increasing increments of about 10% of the full 

capacity. In this example the measurement uncertainty for the weighing machine is 

calculated at the full-applied load. During the calibration, when the 60 kg standard weight 

applied on the weighing machine it indicated 59.99 kg. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  Weighing Machine being calibrated with 60 kg  

 (built up by three 20 kg) standard weights 

 

 

2.0 MATHEMATICAL MODEL 

 

The mathematical model for direct comparison method can be expressed as: 

 

    

 where 

 S  : Scale reading (the reading of the unit under test). 

 M  : Mass of the standard weight used to calibrate the electronic weighing machine. 

 E  : Error of the scale reading. 

 

 

3.0 LAW OF PROPAGATION OF UNCERTAINTY 

 

Where all input quantities are considered uncorrelated or called independent, the 

combined standard uncertainty uc (S) can be expressed by law of propagation of the scale 

reading (given in equation ( 1 )) as follows: 

 

59.99 kg 
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Standard 

Weights 
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 where each corresponding sensitivity coefficient is as follows  

 

  )(Mu  : standard uncertainty of the standard weight. 

 )(Eu  : standard uncertainty due to the error of the scale reading. 

   

 and        

     

 where 

 )( cMu : standard uncertainty of the standard weight taken from its calibration report. 

 )( dMu : standard uncertainty of the standard weight drift within its calibration intervals. 

 

 and        

     )()()()( 222

repbres EuEuEuEu   

 

 where 

 )( resEu : standard uncertainty of the error of the scale reading due to its resolution. 

 )( bEu  : standard uncertainty of the error of the scale reading due to air buoyancy effect. 

 )( repEu : standard uncertainty of the error of the scale reading due to its repeatability. 

 

 Therefore, 

 

)2...()()()()()()( 22222222222
repEbMresEdMcMc EucEucEucMucMucSu 

 

4.0 EVALUATION OF UNCERTAINTY COMPONENTS 

 

 Type B 
 

4.1 
cMu , a set of standard weights was used to calibrate the weighing machine from 0 to 60 kg, 

the largest uncertainty would be at the largest built up standard weight of 60 kg with the 

uncertainty of ± 1.8 g, at the given level of confidence of 95 %. Assuming a normal 

distribution, the degrees of freedom is . 
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 Hence, the standard uncertainty   
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
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4.2 
dMu , the estimated limits of  the standard weights drift within the calibration interval is ± 0.3 

g.  It is assumed to be a rectangular distribution, hence the degrees of freedom is . Thus, 

the standard uncertainty 
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4.3 
resEu , resolutions of the unit under test is 0.01 kg considered as a rectangular distribution , 

hence the degrees of freedom is . Therefore, the standard uncertainty, 

    

4.4 
bEu , the calibration was carry out in the controlled environment laboratory, the standard 

uncertainty of the weighing machine reading due to air bouyancy effect is estimated to be ± 

0.55 g, assuming a rectangular distribution with degrees of freedom equals . The standard 

uncertainty  
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4.5 
repEu , standard uncertainty during the calibration were obtained from three intervals of the 

scale. At near zero, the standard deviation, 0 = ± 0.01 kg with the degrees of freedom, 0v = 

9. At half full load, the standard deviation, 
h = ± 0.01 kg with the degrees of freedom, hv = 

9. At full load, the standard deviation, 
f = ± 0.01 kg with the degrees of freedom, fv = 9.  

The pooled standard deviation , 
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with the degrees of freedom 
repEv  = 27.  Since the scale reading during calibration was 

measured one time at each calibrated point, hence, the standard uncertainty 

        

 

5.0 UNCERTAINTY BUDGET TABLE 
 

Source of 

Uncertainty 

Symbol 

xi 

Type Uncertainty 

value 

Probability 

distribution 

Coverage 

factor 

Standard 

uncertainty 

u(xi) 

Sensitivity 

coefficient 

ci 

ci x u(xi) Degrees 

of 

freedom  

 

Standard 

weight from 

calibration 

Mc B 1.8 g Normal 2 0.9 g 1 0.9 g ∞ 

Standard 

weight drift 

Md B 0.3 g Rectangular 3  0.173 g 1 0.173 g ∞ 

Resolution of 

scale reading 

Eres B 5 g Rectangular 3  2.9 g 1 2.9 g ∞ 

Air bouyancy 

effect on scale 

reading 

 

Eb 

 

B 

 

0.55 g 

 

Rectangular 

 

3  

 

0.318 g 

 

1 

 

0.318 g 

 

∞ 

Repeatability 

of scale 

reading 

 

Erep 

 

A 

 

10 g 

 

- 

 

- 

 

10 g 

 

1 

 

10 g 

 

27 

 

 

6.0 COMBINED STANDARD UNCERTAINTY 

 

 The Combined Standard Uncertainty )(Suc using equation ( 2 )  
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7.0 EFFECTIVE DEGREES OF FREEDOM 
 

Using Welch-Satterthwaite formula to calculate the effective degrees of freedom for 

combined standard uncertainty 
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 where 

 effv  : effective degrees of freedom of the combined standard uncertainty. 

 
cMv  : degrees of freedom of the standard uncertainty of standard weight. 

 
dMv  : degrees of freedom of the standard uncertainty due to standard weight drift. 

 
resEv  : degrees of freedom of the standard uncertainty due to scale reading resolution. 

 
bEv   : degrees of freedom of the standard uncertainty due to air bouyancy on scale    

reading. 

 
repEv  : degrees of freedom of the standard uncertainty due to scale reading repeatability. 

 

 

8.0 EXPANDED UNCERTAINTY 

 

 For 32effv , k = 2 can be used at approximately 95 % level of confidence.  Therefore, 

the expanded uncertainty U(S) is then calculated as follows: 

  

  

9.0 REPORTING OF RESULTS 

 

During the calibration, when the 60 kg standard weight applied on the weighing machine 

it indicated 59.99 kg. 

 

The weighing machine indicated value of 59.99 kg having an expanded uncertainty of  ± 

0.02 kg with a coverage factor of  k = 2, assuming a normal distribution at a level of 

confidence of approximately 95 %. 
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1.0 INTRODUCTION 

 

 Using a coordinate measuring machine (CMM) to measure the length of a cylindrical rod 

from the centre of one end face to the other. 

 

 

 

 
 

Figure 1: Measurement set-up 

 

2.0 MATHEMATICAL MODEL 

 

 ) T   T  ( L = L rrmmmr  -1  ...(9) 

 where 

 
rL  : length of cylindrical rod at 20 C. 

 mL  : length as measured by CMM. 

 
r  : coefficient of thermal expansion of cylindrical rod. 

 m  : coefficient of thermal expansion of CMM scale. 

  
rT  : temperature deviation of the cylindrical rod from 20 C during measurement 

process. 

  mT  : temperature deviation of CMM scale from 20 C during measurement process. 
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Sensitivity Coefficients are as follows :- 

 

 

 Therefore, 
    

 

 

3.0 STANDARD UNCERTAINTY EVALUATION 

 

3.1 Uncertainty of measured length, )( mLu  

 

 From the ten repeated measurements taken, the mean measured result was 300.0008 mm 

with a standard deviation of 0.0020 mm.  Therefore, the standard uncertainty, )( 1mLu , 

equals the standard deviation of the mean of the ten measurements, 0.0006 mm, with 

degrees of freedom, )( 1mL = 10 - 1 = 9. 

 

 From the performance verification report on the CMM, the measurement uncertainty of the 

machine at a confidence level of approximately 95 % is ± (1.2 + 3l) m, where l is in metre.  

Therefore, the standard uncertainty, )( 2mLu  = (1.2  + 3 x 0.3) / 2 = 1.05 m or 0.00105 mm 

with degrees of freedom, )( 2mL =  , normal distribution is assumed. 

 

 Therefore, 
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with degrees of freedom, )( mL  

 

3.2 Uncertainty of coefficient of thermal expansion of CMM scale, )( mu   

 

 The coefficient of thermal expansion of CMM scale is given as m =  5 x 10-6 / °C with an 

uncertainty represented by a rectangular distribution with boundaries ± 2 x 10 –6  / °C. 

Therefore, the standard uncertainty, 
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3.3 Uncertainty of temperature deviation of CMM scale from 20 °C,  )( mTu  .  

 

 The temperature of CMM scale was measured as 19.9 °C with an uncertainty represented by 

a rectangular distribution with boundaries ± 0.5 °C.  The standard uncertainty, 

 

   





)(freedomofdegreeswithC289.0

3

5.0
)(

o

m

m

T

Tu



 

 

 

4.0 SENSITIVITY COEFFICIENTS  
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5.0   UNCERTAINTY BUDGET TABLE 

 

Source of 

Uncertainty 

Symbol 

xi 

Type Uncertainty 

value 

Probability 

distribution 

Coverage 

factor 

Standard 

uncertainty 

u(xi) 

Sensitivity 

coefficient 

ci 

|ci| x 

u(xi) 

mm 

Degrees 

of 

freedo

m  

Repeatabilit

y of reading 

u(Lm1) A - - - 0.6 m   0.999 999 0.0006  9 

CMM 

specification 

u(Lm2) B  (1.2 + 3 l) 

m 

Normal 1.96 1.05 m   0.999 999 0.0010   

Coefficient 

of thermal 

expansion of 

CMM scale 

u(m) B  2 x 10 –6 / 
o C 

Rectangular 3   1.2 x 10 –6 

/ °C 

30.000 08 mm °C 3.6 x 10 
–5 

 

Temperature 

deviation of  

CMM scale 

u(Tm) B  0.5 o C Rectangular 3  0.289 °C  - 0.0015 mm / °C 0.0004  

Coefficient 

of thermal 

expansion  

of rod 

u(r) B  2 x 10 –6 / 
o C 

Rectangular 3   1.2 x 10 –6 / ° 

C 

- 30.000 08 

mm °C 

3.6 x 10 
–5 

 

Temperature 

deviation of  

rod 

u(Tr) B  0.5 o C Rectangular 3  0.289 °C  0.00345 mm / °C 0.0010  

 

 

6.0 COMBINED STANDARD UNCERTAINTY, )( rc Lu  

 

mm00161.0)(

mm0000026.0

289.0x00345.0)10x2.1(x00008.30

289.0x0015.0)10x2.1(x00008.30001209.0x999999.0

)()()()(

)()()()()()1()(

2

22262

2226222

2222

2222222

















rc

rrmrrm

mmmmmmmrrmmrc

Lu

TuLuTL

TuLuTLLuTTLu





 

  



 

EXAMPLE 12: COORDINATE MEASURING MACHINE MEASUREMENT     

Technical Guide 1, March 2001 Page 101 of 113 

 

 

With effective degrees of freedom, 

 

 

 

7.0 EXPANDED UNCERTAINTY 

 

 For 465)( reff L , k = 2 can be used at an approximately 95 % level of confidence level. 

 Therefore,  

    

 

8.0 MEAN MEASURED RESULT 
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9.0  REPORTING OF RESULTS  

 

The measured length of the cylindrical rod was found to be 300.0006 mm. The associated 

expanded uncertainty of measurement is  0.0032 mm, estimated at a level of confidence 

of approximately 95 % with coverage factor k = 2. 
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1.0 INTRODUCTION 

 

The calibrated instrument is a digital micrometer of 0-25 mm range with resolution of 

0.001 mm. 

 
Figure 1: Measurement set-up 

 

The error of measurement is obtained by comparison against gauge blocks of the 

following sizes: 

 

3.1, 6.5, 9.7, 12.5, 15.8, 19, 21.9, 25 mm 

 

 

2.0 MATHEMATICAL MODEL 

 

 

 

where  

20E  : error of measurement obtained at 20 ° C. 

20IR  : instrument reading at 20 ° C. 

20G  : gauge block value given in the calibration report at 20 ° C. 

 

With consideration of the temperature effect on the instrument under calibration, the 

above expression can be re-written as: 

 

 

where 

tIR  : instrument reading at temperature t. 

IR  : coefficient of thermal expansion of the instrument. 

IRt  : temperature deviation of instrument from 20 °C, ie (t – 20). 
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Contributory variances: 
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 Sensitivity coefficients: 
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Therefore,  

 )()()()()()()1()( 20

2222222
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2 GutuIRutIRIRutEu IRIRtIRIRttIRIRc    

 

 

3.0 MEASURED RESULTS 

 

The results tabulated below are based on the assumptions that measurements were taken 

at temperature of 20.5 °C and the instrument has a coefficient of thermal expansion of 

11x10 –6 / °C. 

 
Nominal 

Length 

(mm) 

Gauge 

Block 

Value, G20 

(mm) 

Instrument Reading, IRt 

 

(mm) 

 

Error, E20 

 

(mm) 

 

Standard 

Deviation 

(m) 

1st 

Reading 

2nd 

Reading 

3rd 

Reading 

 

Mean 

  

0.0 

3.1 

6.5 

9.7 

12.5 

15.8 

19 

21.9 

25 

- 

3.100 05 

6.499 97 

9.700 00 

12.500 04 

15.800 03 

19.000 07 

21.900 00 

25.000 07 

0.000 

3.101 

6.501 

9.699 

12.501 

15.800 

19.001 

21.900 

25.001 

0.000 

3.100 

6.501 

9.700 

12.501 

15.801 

19.001 

21.900 

25.001 

0.000 

3.101 

6.500 

9.699 

12.501 

15.800 

19.001 

21.900 

25.000 

0.000 

3.1007 

6.5007 

9.6993 

12.5010 

15.8003 

19.0010 

21.9000 

25.0007 

   0.000 

+ 0.001 

+ 0.001 

-  0.001 

+ 0.001 

   0.000 

+ 0.001 

   0.000 

   0.000 

0.000 

0.577 

0.577 

0.577 

0.000 

0.577 

0.000 

0.000 

0.577 
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4.0 STANDARD UNCERTAINTY EVALUATION 

 

4.1  Uncertainty of instrument reading, )( tIRu  

 

Generally, the highest standard deviation is used to estimate the standard uncertainty due 

to repeated measurements, )(Rptu . From the three measurements taken, we obtain: 

 

21)(freedomofdegreeswithμm333.0

3

577.0

3where
577.0

)(







nRpt

n
n

Rptu



 

 

The resolution (0.001 mm or 1 m) of the micrometer is considered to be full-width of 

rectangular distribution and its associated standard uncertainty, )(Resu is given as: 

 

   





)(freedomofdegreeswithμm289.0

12

001.0
)(

Res

Resu



 

 Therefore,  
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4.2 Uncertainty of gauge block, )( 20Gu  

 

  Assuming that the uncertainty given in the calibration report with coverage factor k = 2 

for gauge block size up to 25 mm is 0.10 m, we obtain: 

 

   





)(freedomofdegreeswithμm05.0

2

10.0
)( 20

20G

Gu


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4.3  Uncertainty of coefficient of thermal expansion of the instrument, )( IRu   

 

Given that the uncertainty of the coefficient of thermal expansion is represented by a 

rectangular distribution with boundaries of  2 x 10 –6 / o C, we obtain: 

 

  









)(freedomofdegreeswithC/10x2.1

3

C/10x2
)(

o6

o6

IR

IRu




  

  

4.4 Uncertainty of temperature deviation of instrument from 20 °C, )( IRtu   

  

Given that the temperature was measured as 20.5 °C with an uncertainty represented by a 

rectangular distribution with boundaries of  0.5 °C, we obtain: 
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5.0 SENSITIVITY COEFFICIENTS 
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1

6
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Taken into consideration the maximum size of measurement,  
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6.0  UNCERTAINTY BUDGET TABLE 

 

Source of 

Uncertainty 

Symbol 

xi 

Type Uncertainty 

value 

Probability 

distribution 

Coverage 

factor 

Standard 

uncertainty 

u(xi) 

Sensitivity 

coefficient 

ci 

ci x u(xi) 

mm 

Degrees 

of 

freedom 

 

Repeatability 

of reading 

u (Rpt) A - - - 0.333 m   1 0.000 333 2 

Resolution of 

instrument 

u (Res) B 0.001 mm Rectangular 12  0.289 m   1 0.000 289  

Gauge block  u (G20) B 0.10 m Normal 2 0.05 m - 1 0.000 05  

Coefficient of 

thermal 

expansion  of 

instrument 

u (IR) B  2 x 10-6  

/ °C 

Rectangular 3  1.2 x 10-6  /°C - 12.5004 

mm  °C 

1.5 x 10 –5  

Temperature 

deviation of 

instrument  

u (tIR) B  0.5 °C Rectangular 3  0.289 o C - 0.000 28 

mm /  °C 

8.1 x 10 –5  

 

 

7.0 COMBINED STANDARD UNCERTAINTY, )( 20Eu  

 

μm444.0)(

19698.0

)05.0()289.0(x)00028.0()10x2.1(x)5004.12()441.0()99999.0(
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Effective degrees of freedom is thus: 
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8.0 EXPANDED UNCERTAINTY 

 

From t-distribution table, at 6)( 20 Eeff  and at an approximately 95 % level of 

confidence, k = 2.52. 

Therefore,  

    U = 2.52 x 0.444 

        = 1.119  m 
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9.0 UNCERTAINTY OF THE RANGE OF ERROR OF TRANSVERSE OF 

 MICROMETER SCREW 

 

 The range of error of transverse of micrometer screw is given as: 

 

   (E20)max - (E20)min = 0.002 mm 

 

Hence,   

μm628.0

)(x2)( 20



 Euerrorofrangeu c  

with degrees of freedom, 

 

   

12

6

444.0

6

444.0

628.0
)(

44

4





errorofrange

 

 

From t-distribution table,  (range of error) = 12 and at an approximately 95 % level of 

confidence, k = 2.23. Therefore, 

 

   U = 2.23 x 0.628 

        = 1.400 m 

   say,     = 0.002 mm 

 

 

10.0 REPORTING OF RESULTS 

 

The range of error of transverse of micrometer screw was found to be 0.002 mm. The 

associated expanded uncertainty of measurement is  0.002 mm, estimated at a level of 

confidence of approximately 95 % with coverage factor k = 2.23.   
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1.0 INTRODUCTION 

 

           A schematic diagram of the calibration set-up is shown in Fig.1. A tungsten lamp of 

(calibrated) luminous intensity value is used as the standard, and the test meter is 

positioned at a distance away from the lamp. Calibration is done by comparing the 

reading of the test meter with the illuminance value determined by the inverse-square 

law from the luminous intensity of the lamp. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic diagram of the calibration set-up 

 

 

2.0 MATHEMATICAL MODEL 
 

 The luminous-intensity standard lamp generates an illuminance of known value at the 

front surface of the detector head of the test meter positioned in front of the lamp with 

a reading Ev :  

  vvv Elightscattered
l

IE 
2

cos
 

 

where 

Iv : luminous intensity of the standard lamp run at a given current at which the 

correlated colour temperature of the lamp is approximately 2856K. 

l  : distance between the lamp filament and the front surface of the test meter. 

2

cos

l
Iv


: the illuminance produced by the lamp according to the inverse-square law. 

  : the angle of deviation from normal incidence at the detector head. 

 Ev  : the error of the test meter; scattered light refers to input signal to the detector 

 from light scattered or reflected from the wall, curtains or other surfaces in 

the  optical set-up other than that from direct illumination by the lamp. 

 Normally, the second and third terms are much smaller than the first one. 

For simplicity, we will assume in the following discussions that  

 

a) the calibration is conducted in a dark room and sufficient measure is taken during 

calibration so that the contribution of scattered light is negligible;  

b) both the lamp and the detector head of the test meter are well aligned to a common 

optical axis determined by the optical bench so that cos  = 1.  

 

Ev 

l 

Iv 

DC 

Std 

Resistor 

 

Std lamp 
Detector 

Head 

Illuminance Meter 

Optical Bench 

Voltmeter 

buffers 

DC Source 

V 



 

 

EXAMPLE 14: ILLUMINATION METER CALIBRATION     

Technical Guide 1, March 2001 Page 109 of 113 

 

 

The measurement equation can then be simplified as  

 

v

v

v E
I

I
E 

2
      …(1) 

 

For incandescent tungsten lamps, the luminous intensity varies with electrical current 

flowing through it according to  

    

   

25.6

)0( 











o

vv
i

i
II       …(2) 

 

where Iv(0) is the reported (calibrated) luminous intensity value of the lamp under a 

current i0.  The current (i) of the lamp is determined by measuring the voltage drop (V) 

across a standard resistor (resistance value R ) that is connected in series with the lamp:  

 

and  

  ..(3).)20()20(1 2

20 



TTRR

R

V
i



  

 

where R20 is the resistance of the standard resistor at 20 C,  and  are the temperature 

coefficients of the resistor, and T is the resistor temperature in Celsius. 

 

 

3. UNCERTAINTY EQUATION 

 

The main sources of measurement uncertainty can be modelled from eq (1) through 

partial differentiation:  
2222
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where the last term represents the standard uncertainty of the error and the assumption 

2l

I
E v

v   is used in the derivation.  

According to eq (2)  
222
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i
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The second term represents the standard uncertainty (type B) of the lamp calibration. The 

first term is the standard uncertainty of current measurement determined by  
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 and  
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  …(8) 

  

where the first and second terms in eq (7) represent the random (type A) uncertainty due 

to measurement repeatability and systematic (type B) uncertainties due to calibration of 

the volt meter respectively. 

  

Substituting eqs (5) - (8) into eq (4), we have 

 

        ...(9))()()(25.6)(25.6)(25.6)(2

or

)(

)0(

)0(
25.62

222222

2

2222

2

22

vvBA

v

v

v

v

v

v

v

v

EuIuRuVuVulu
E

dE

E

Ed

I

dI

R

dR

V

dV

l

dl

E

dE





















 






























































 

where  

u(l)   : standard uncertainty of distance measurement. 

u(VA) : type A standard uncertainty of voltage measurement (voltmeter repeatability). 

u(VB) : type B standard uncertainty of voltage measurement due to voltmeter accuracy 

specification. 

u(R) : standard uncertainty of resistance value of the standard resistor. 

u(Iv) : standard uncertainty of standard lamp calibration. 

u(Ev) : standard uncertainty of the error of illuminance meter measurement. 

 

 

4.0 NUMERICAL EXAMPLE 

 

4.1. u(l), uncertainty of distance measurement 

 

It can be determined using the accuracy of the scale on the bench and 

repeatability of the distance measurement. From past data, it is typically   1 

mm at a distance 1 m or  0.1 % and can be considered as a type B uncertainty 

with a rectangular distribution. The relative standard uncertainty is therefore  

%0577.0

3

%1.0
)(



lu
 

The degrees of freedom is . 
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4.2. u(VA), type A standard uncertainty of voltage measurement (voltmeter repeatability),  

is determined by the standard deviation of the test data shown in the following table: 

 

Data (mV) 36.6209 

 36.6210 

 36.6209 

 36.6209 

 36.6210 

Mean (mV) 36.62094 

STD (mV) 0.000055 

STD of Mean (mV) 0.000024 

Standard uncertainty 

(relative STD of Mean ) 

6.6E-5 % 

Number of measurement (n) 5 

Degrees of Freedom (n-1) 4 

 Note: STD = standard deviation. 

 

 

4.3. u(VB), type B standard uncertainty of voltage measurement due to voltmeter accuracy 

specification. 

 

 For the range of concern (100 mV), it is given by the manufacturer as  (0.0015 % of  

reading + 0.0003 % of range) under the environmental condition 23 C  1 C within 

24 Hours. Using the data above, we have  

 

u(VB)   = 0.0015 % x 36.6 + 0.0003 % x 100  

   = 0.00085 mV 

     0.0023 % 

 

with a degrees of freedom of . 

 

 

4.4. u(R), relative standard uncertainty of resistance value of the standard resistor,  is 

determined by eq (8).  

 

In this example, the values given by the manufacturer are  = 2.5 x 10-6 C-1 and  = 

0.55 x 10-6 C-1. The DC resistance of the standard resistor is given in it's calibration 

report as 0.009 999 26   0.000 000 05 , temperature corrected to 23 C, at a level 

of confidence of approximately 95 % with a coverage factor k = 2. This corresponds 

to a relative standard uncertainty  0.000 25 %, applicable also to dR20/R20. Assuming 

the temperature variation ( dT ) of the resistor during calibration is  1 C under 

typical calibration lab environmental conditions T = 23  1 C, we have  
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   with a degrees of freedom of . 
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4.5 u(Iv) - relative standard uncertainty of standard lamp calibration 

An expanded uncertainty of  1.1% is given in the calibration report at a confidence 

level approximately 95 % with a coverage factor of 2. This corresponds to a relative 

standard uncertainty  0.55 % with a degrees of freedom of . 

 

4.6 u(Ev) - standard uncertainty of the error of illuminance meter measurement 

(repeatability) 

 

This is determined by measurement data given below 
 Applied 

value 

(Iv(0) /l
2)  

Measured 

value 

( Ev ) 

Error 

(Ev =Ev - Iv(0)/l2 ) 

data (lux) 1599.6 1559.2 - 40.4 

  1560.2 - 39.4 

  1560.2 - 39.4 

  1559.2 - 40.4 

  1559.2 - 40.4 

Mean  1559.6 - 40.0 

STD  0.548 

STD of the mean:   0.245 

Standard uncertainty  

(relative STD of the mean) 

 0.016 %  

Number of measurement  5  

Degrees of freedom  4  

 

Notes: From the definition given in eq (9), u(Ev) = d(Ev)/Ev. Since the applied 

value in the calibration is a constant, the standard deviations of the error d(Ev) and of 

the test meter reading (dEv ) are identical. Therefore, u(Ev) is equal to the relative 

standard deviation of the mean of the test meter readings.  

 

5.0 UNCERTAINTY BUDGET TABLE 

  
Source of 

Uncertainty 

Symbol 

 

xi 

Type Uncertainty 

value  

(%) 

Probability 

distribution 

Coverage 

factor 

Standard 

uncertainty 

(%) 

 u(xi) 

Sensitivity 

coefficient 

ci 

ci x u(xi) 

(%) 

Degrees 

of 

freedom 

i 

Unc of dist 

meas 
 

u(l) 

 

B 

 

0.1 

 

Rectangular 

 

1.73 

 

0.058 

 

-2 

 

0.12 

 

 

Repeatability 

of voltage 

meas 

 

u(VA ) 

 

A 

 

0.000066 

 

- 

 

- 

 

0.000066 

 

6.25 

 

0.00041 

 

4 

Accuracy of 

Voltmeter  
 

u(VB) 

 

B 

 

0.0023 

 

Rectangular 

 

1.73 

 

0.0013 

 

6.25 

 

0.0084 

 

 

Cal unc of std 

resistor 

 

u(R) 

 

B 

 

0.00063 

 

Normal 

 

1 

 

0.00063 

 

-6.25 

 

0.0039 

 

 

Cal unc of std 

lamp 

 

u(Iv ) 

 

B 

 

1.1 

 

Normal 

 

2 

 

0.55 

 

1 

 

0.55 
 

Repeatability 

of test meter 

reading 

 

u(Ev) 

 

A 

 

0.016 

 

- 

 

- 

 

0.016 

 

1 

 

0.016 

 

5 
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6.0 COMBINED STANDARD UNCERTAINTY 

 The combined relative standard uncertainty uc(Ev) is given by eq (9), which can be 

rewritten as below 

 

 Substituting the data from Section 4, we have 

 

7.0 EFFECTIVE DEGREES OF FREEDOM 
  

It can be calculated from the general formulae given in the Guide and is essentially 

infinity in this example. 

 

 

8.0 EXPANDED UNCERTAINTY 

 

For effective degrees of freedom veff = , k = 2 is used at approximately 95 % level of 

confidence. Therefore, the expanded uncertainty  

%1.1

%56.0x2

)(





 vc EukU

 

  

9.0 REPORTING OF RESULTS 

 
Description Applied value (lux) Indicated value (lux) Deviation (%) (lux) 

Range: 

           Auto 

 

1599.6 

 

1559.6 

 

-40 (-2.3%) 

The expanded measurement uncertainty is  1.1 %, estimated at a level of confidence 

of approximately 95 % with a coverage factor k = 2.  
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